Những câu hỏi liên quan
TD
Xem chi tiết
KL
5 tháng 10 2023 lúc 8:09

C = 5 + 5² + 5³ + ... + 5³⁰

= (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)

= 5.(1 + 5) + 5³.(1 + 5) + ... + 5²⁹.(1 + 5)

= 5.6 + 5³.6 + ... + 5²⁹.6

= 6.(5 + 5³ + ... + 5²⁹) ⋮ 6 (1)

Do C ⋮ 6 ⇒ C ⋮ 2 (2)

Lại có C = (5 + 5²) + (5³ + 5⁴) + ... + (5²⁹ + 5³⁰)

= 30 + 5².(5 + 5²) + ... + 5²⁸.(5 + 5²)

= 30 + 5².30 + ... + 5²⁸.30

= 30.(1 + 5² + ... + 5²⁸)

= 10.3.(1 + 5² + ... + 5²⁸) ⋮ 10 (3)

Từ (1), (2) và (3) suy ra C ⋮ 2; C ⋮ 6; C ⋮ 10

Bình luận (0)
HH
Xem chi tiết
PD
25 tháng 7 2018 lúc 8:41

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

Bình luận (0)
HH
25 tháng 7 2018 lúc 8:44

chả hiểu j

Bình luận (0)
LC
Xem chi tiết
LQ
Xem chi tiết
NQ
21 tháng 2 2018 lúc 19:51

Nhận xét : số chính phương chia 3 dư 0 hoặc 1

+, Nếu x và y đều ko chia hết cho 3 => x^2 và y^2 đều chia 3 dư 1

=> x^2+y^2 chia 3 dư 2 ( ko t/m )

+, Nếu trong 2 số có 1 số chia hết cho 3 , 1 số ko chia hết cho 3

=> x^2+y^2 chia 3 dư 1 ( ko t/m )

Vậy để x^2+y^2 chia hết cho 3 thì x và y đều chia hết cho 3

Tk mk nha

Bình luận (0)
LC
Xem chi tiết
HV
25 tháng 3 2019 lúc 22:27

* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3

Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)

=>giả sử sai => m chia hết cho 3 

                         Chứng minh tương tự n chia hết cho 3

* m,n chia hết cho 3 => m^2+n^2  chia hết cho 3 

Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3

Bình luận (0)
NT
Xem chi tiết
PD
1 tháng 12 2016 lúc 16:54

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

Bình luận (0)
PD
1 tháng 12 2016 lúc 17:00

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

Bình luận (0)
PD
1 tháng 12 2016 lúc 17:03

7)Ta có:abcabc=100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c

=11(9100a+910b+91c)\(⋮11\)

Vậy số có dạng abcabc luôn chia hết cho 11(đpcm)

 

Bình luận (0)
LX
Xem chi tiết
H24
Xem chi tiết
QS
Xem chi tiết
MP
11 tháng 12 2016 lúc 21:11

Vì p lak số nguyên tố và p> 3 nên p sẽ có dạng 3k+1 và 3k+2

TH1: Nếu p=3k+1 thì p+1 = p+ 2= 3k+1+2=3k+3 chai hêt cho 3

.........................................................................→ là hợp số ( loai)

Th2: Nếu p=3k+2 thì P+1 = 3k+2+1= 3k + 3 chia hết cho 3 (1)

Vì p là số nguyên tố và p > 3 nên p là số lẻ

→ p+1 là số chẵn → p+1 chia hết cho 2 (2)

Mà (2;3)=1 nên p+1 chia hết cho ( 2.3) hay p+1 chia hết cho6

Bình luận (1)
NT
11 tháng 12 2016 lúc 21:30

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 ( k ϵ N)

Nếu p = 3k+1 thì p+2= 3k+1+2= 3k+3= 3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p = 3k+1 không thoả mãn.

Vậy p có dạng p = 3k+2 ( Vì p+2= 3k+2+2= 3k+4 là một số nguyên tố)

Suy ra p+1= 3k+2+1= 3k+3= 3.(k+1) chia hết cho 3

Mặt khác, do p là số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là số nguyên tố lẻ suy ra p+1 là số chẵn suy ra p+1 là số chia hết cho 2

Vì p chia hết cho 2 và 3 mà UWCLN(2;3)=1 nên p+1 chia hết cho 6

Mong bạn tick cho mk nha!

Bình luận (2)