Đại số lớp 6

NT

1/ so sánh 2*60 và 3*40

2/tìm ƯC của 2 số n+3 và 2n+5

3/A=5+5*2+5*3+5*4+...+5*99 chia hết cho 31

4/chứng tỏ (n+1) (n+2) (n+3) chia hết cho 6

5/ Chứng minh 3n+2 và 3n+3 (n\(\in\) n) là 2 số nguyên tố

6/tính tổng 2*1+2*2+2*3+...+2*100-2*101

7chung71 tỏ rằng số có dạng \(\frac{ }{abcabc}\) bao giờ chũng chia hết cho 11

8/Tìm số tự nhiên \(\frac{ }{abc}\) có 3 chữ số khác nhau , chia hết cho các số nguyên tố a,b,c.

Giúp mình với thứ 6 mình phải nộp rồi banhqua

PD
1 tháng 12 2016 lúc 16:54

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

Bình luận (0)
PD
1 tháng 12 2016 lúc 17:00

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

Bình luận (0)
PD
1 tháng 12 2016 lúc 17:03

7)Ta có:abcabc=100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c

=11(9100a+910b+91c)\(⋮11\)

Vậy số có dạng abcabc luôn chia hết cho 11(đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
QA
Xem chi tiết
NL
Xem chi tiết
BD
Xem chi tiết
BD
Xem chi tiết
NP
Xem chi tiết
NL
Xem chi tiết