Ôn tập toán 6

QS

cho P và P + 2 là các số nguyên tố < P > 3 . chứng minh rằng P + 1 chia hết cho 6

 

MP
11 tháng 12 2016 lúc 21:11

Vì p lak số nguyên tố và p> 3 nên p sẽ có dạng 3k+1 và 3k+2

TH1: Nếu p=3k+1 thì p+1 = p+ 2= 3k+1+2=3k+3 chai hêt cho 3

.........................................................................→ là hợp số ( loai)

Th2: Nếu p=3k+2 thì P+1 = 3k+2+1= 3k + 3 chia hết cho 3 (1)

Vì p là số nguyên tố và p > 3 nên p là số lẻ

→ p+1 là số chẵn → p+1 chia hết cho 2 (2)

Mà (2;3)=1 nên p+1 chia hết cho ( 2.3) hay p+1 chia hết cho6

Bình luận (1)
NT
11 tháng 12 2016 lúc 21:30

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 ( k ϵ N)

Nếu p = 3k+1 thì p+2= 3k+1+2= 3k+3= 3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p = 3k+1 không thoả mãn.

Vậy p có dạng p = 3k+2 ( Vì p+2= 3k+2+2= 3k+4 là một số nguyên tố)

Suy ra p+1= 3k+2+1= 3k+3= 3.(k+1) chia hết cho 3

Mặt khác, do p là số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là số nguyên tố lẻ suy ra p+1 là số chẵn suy ra p+1 là số chia hết cho 2

Vì p chia hết cho 2 và 3 mà UWCLN(2;3)=1 nên p+1 chia hết cho 6

Mong bạn tick cho mk nha!

Bình luận (2)

Các câu hỏi tương tự
QS
Xem chi tiết
PN
Xem chi tiết
N2
Xem chi tiết
HN
Xem chi tiết
QS
Xem chi tiết
HA
Xem chi tiết
BD
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết