Những câu hỏi liên quan
DH
Xem chi tiết
NH
Xem chi tiết
NL
17 tháng 6 2020 lúc 0:34

\(A+B+C=180^0\Rightarrow A+B=180^0-C\)

\(\Rightarrow sin\left(A+B\right)=sin\left(180^0-C\right)=sinC\)

\(cos\left(A+B\right)=cos\left(180^0-C\right)=-cosC\)

\(tan\left(A+B\right)=tan\left(180^0-C\right)=-tanC\)

b/ \(\frac{A+B+C}{2}=90^0\Rightarrow\frac{A+B}{2}=90^0-\frac{C}{2}\)

\(\Rightarrow sin\frac{A+B}{2}=sin\left(90^0-\frac{C}{2}\right)=cos\frac{C}{2}\)

\(cos\frac{A+B}{2}=cos\left(90^0-\frac{C}{2}\right)=sin\frac{C}{2}\)

\(tan\frac{A+B}{2}=tan\left(90-\frac{C}{2}\right)=cot\frac{C}{2}\)

c/ \(A+B=180^0-C\Rightarrow tan\left(A+B\right)=-tanC\)

\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\)

\(\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)

Bình luận (0)
NL
17 tháng 6 2020 lúc 0:51

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

Bình luận (0)
NL
17 tháng 6 2020 lúc 0:55

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

Bình luận (0)
LN
Xem chi tiết
BT
Xem chi tiết
HL
25 tháng 12 2015 lúc 16:34

a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)

 (A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)

b) Bạn xem lại đề nhé

c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)

   = \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)

\(sin^4a+cos^4a+2sin^2a.cos^2a\)

\(\left(sin^2a+cos^2a\right)^2=1\)

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 7 2018 lúc 7:45

A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º

a) sin A = sin (180º – A) = sin (B + C)

b) cos A = – cos (180º – A) = –cos (B + C)

Bình luận (0)
H24
Xem chi tiết
QL
21 tháng 9 2023 lúc 21:53

Ta có: \(A + B + C = {180^0}\)(tổng 3 góc trong một tam giác)

\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)

Bình luận (0)
TL
Xem chi tiết
SK
Xem chi tiết
TL
Xem chi tiết