Chương 6: CUNG VÀ GÓC LƯỢNG GIÁC. CÔNG THỨC LƯỢNG GIÁC

NH

cho tam giác ABC . chứng minh:

a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C

b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)

c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)

d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)

f, sin2A+sin2B+sin2C= 4sinAsinBsinC

g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC

NL
17 tháng 6 2020 lúc 0:34

\(A+B+C=180^0\Rightarrow A+B=180^0-C\)

\(\Rightarrow sin\left(A+B\right)=sin\left(180^0-C\right)=sinC\)

\(cos\left(A+B\right)=cos\left(180^0-C\right)=-cosC\)

\(tan\left(A+B\right)=tan\left(180^0-C\right)=-tanC\)

b/ \(\frac{A+B+C}{2}=90^0\Rightarrow\frac{A+B}{2}=90^0-\frac{C}{2}\)

\(\Rightarrow sin\frac{A+B}{2}=sin\left(90^0-\frac{C}{2}\right)=cos\frac{C}{2}\)

\(cos\frac{A+B}{2}=cos\left(90^0-\frac{C}{2}\right)=sin\frac{C}{2}\)

\(tan\frac{A+B}{2}=tan\left(90-\frac{C}{2}\right)=cot\frac{C}{2}\)

c/ \(A+B=180^0-C\Rightarrow tan\left(A+B\right)=-tanC\)

\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\)

\(\Leftrightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\)

Bình luận (0)
NL
17 tháng 6 2020 lúc 0:51

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

Bình luận (0)
NL
17 tháng 6 2020 lúc 0:55

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
ND
Xem chi tiết
AL
Xem chi tiết
KA
Xem chi tiết
HT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
IH
Xem chi tiết