Những câu hỏi liên quan
AT
Xem chi tiết
LL
Xem chi tiết
NT
19 tháng 5 2022 lúc 20:09

3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)

4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)

\(=-2\sqrt{2}\)

6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)

\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)

\(=-4\sqrt{3}\)

Bình luận (0)
PN
Xem chi tiết
LN
25 tháng 11 2016 lúc 22:34

 kho wa do

Bình luận (0)
HL
Xem chi tiết
NT
17 tháng 12 2023 lúc 10:04

a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)

\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)

=0

b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)

\(=\sqrt{3}+2-\sqrt{3}\)

=2

c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)

\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)

\(=4-\sqrt{7}+\sqrt{7}\)

=4

d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)

\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)

\(=16\sqrt{5}\)

e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)

\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)

\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)

\(=-16\sqrt{3}\)

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 8 2018 lúc 9:37

\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

 \(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)

\(=-2+\sqrt{6}-3+2\sqrt{6}\)

\(=-5+3\sqrt{6}\)

Bình luận (0)
H24
5 tháng 8 2018 lúc 9:48

\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)

\(=3-\sqrt{7}-2+2\sqrt{7}\)

\(=1+\sqrt{7}\)

Bình luận (0)
H24
5 tháng 8 2018 lúc 10:01

\(\sqrt{28-16\sqrt{3}}+\sqrt{73-40\sqrt{3}}\)

\(=\sqrt{4^2-2.4.2\sqrt{3}+\left(2\sqrt{3}\right)^2}+\sqrt{5^2-2.5.4\sqrt{3}+\left(4\sqrt{3}\right)^2}\)

\(=\sqrt{\left(4-2\sqrt{3}\right)^2}+\sqrt{\left(5-4\sqrt{3}\right)^2}\)

\(=4-2\sqrt{3}-\left(5-4\sqrt{3}\right)\)

\(=4-2\sqrt{3}-5+4\sqrt{3}\)

\(=-1+2\sqrt{3}\)

Bình luận (0)
BA
Xem chi tiết
DD
Xem chi tiết
KT
10 tháng 7 2018 lúc 21:50

\(\sqrt{\left(2\sqrt{2}-3\right)^2}+2\sqrt{2}=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3\)

\(\sqrt{\left(\sqrt{10}-3\right)^2}+\sqrt{\left(\sqrt{10}-4\right)^2}=\left|\sqrt{10}-3\right|+\left|\sqrt{10}-4\right|\)

\(=\sqrt{10}-3+4-\sqrt{10}=1\)

\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|2-\sqrt{3}\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)

Bình luận (0)
KT
10 tháng 7 2018 lúc 21:55

      \(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)

\(=6-\sqrt{5}-6-\sqrt{5}=-2\sqrt{5}\)

   \(A=\sqrt{49a^2}+3a=7\left|a\right|+3a\)

Nếu  \(a\ge0\)thì:   \(A=7a+3a=10a\)

Nếu  \(a< 0\)thì:  \(A=-7a+3a=-4a\)

   \(B=3\sqrt{9a^6}-6a^3=9\left|a^3\right|-6a^3\)

Nếu  \(a\ge0\)thì:  \(B=9a^3-6a^3=3a^3\)

Nếu  \(a< 0\)thì:  \(B=-9a^3-6a^3=-15a^3\)

Bình luận (0)
QN
Xem chi tiết
PL
27 tháng 8 2018 lúc 17:27

\(1.\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}=5+\sqrt{7}-\sqrt{7-2\sqrt{7}+1}=5+\sqrt{7}-\sqrt{7}+1=6\)

\(2.\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{3-2\sqrt{3}+1}=\sqrt{3}+1-\sqrt{3}+1=2\)

\(3.VT=\sqrt{11}-\sqrt{20-6\sqrt{11}}=\sqrt{11}-\sqrt{11-2.3\sqrt{11}+9}=\sqrt{11}-\sqrt{11}+3=3=VP\)

Vậy , đẳng thức được chứng minh .

\(4.VT=\sqrt{41+12\sqrt{5}}-\sqrt{41-12\sqrt{5}}=\sqrt{36+2.6\sqrt{5}+5}-\sqrt{36-2.6\sqrt{5}+5}=6+\sqrt{5}-6+\sqrt{5}=2\sqrt{5}=VP\)

Vậy , đẳng thức được chứng minh .

Bình luận (0)
T8
Xem chi tiết