tính
\(\sqrt{28-10\sqrt{3}}\)
\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{32-10\sqrt{7}}\)
\(\sqrt{11-4\sqrt{7}}\)
Rút Gọn
1.\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
2.\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
3.\(\sqrt{72}+\sqrt{4\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
4.\(\left(\sqrt{325}-\sqrt{117}+2\sqrt{208}\right):\sqrt{13}\)
5.\(\left(\sqrt{12}-\sqrt{48}-\sqrt{108}-\sqrt{192}\right):2\sqrt{3}\)
6.\(\left(2\sqrt{112}-5\sqrt{7}+2\sqrt{63}-2\sqrt{28}\right)\sqrt{7}\)
7.\(\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)\)
8.\(7\sqrt{24}-\sqrt{150}-5\sqrt{54}\)
9.\(2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}\)
10.\(\sqrt{32}-\sqrt{50}+\sqrt{98}-\sqrt{72}\)
11.\(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
12.\(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
13.\(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
14.\(\sqrt{125}-2\sqrt{20}-3\sqrt{80}+4\sqrt{45}\)
15.\(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}\)
16.\(10\sqrt{28}-2\sqrt{275}-3\sqrt{343}-\frac{3}{2}\sqrt{396}\)
chỉ cần đưa về dạng hằng đảng thức thôi , xin cam ơn mọi người
1,\(\sqrt{26+15\sqrt{3}}\)
2,\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
3,\(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}\)
4,\(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
5,\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
6,\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
7,\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
8,\(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
9,\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)
4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=-2\sqrt{2}\)
6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
\(=-4\sqrt{3}\)
Tính giá trị của biểu thức:
\(\sqrt{2+\sqrt{3+\sqrt[3]{4+5\sqrt[5]{6+7\sqrt[7]{8+9\sqrt[9]{10+11\sqrt[11]{12}}}}}}}\)
\(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)
=0
b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)
\(=\sqrt{3}+2-\sqrt{3}\)
=2
c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)
\(=16\sqrt{5}\)
e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)
\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
\(=-16\sqrt{3}\)
Thực hiện phép tính
a) \(\left(2-\sqrt{3}\right)^2-\sqrt{4-2\sqrt{3}}+\sqrt{12}\)
b)\(\frac{2\sqrt{12}-\sqrt{6}}{2\sqrt{6}-\sqrt{3}}+\frac{10+\sqrt{5}}{2\sqrt{15}+\sqrt{3}}\)
c)\(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right):\left(\sqrt{2}+\sqrt{3}\right)\)
d)\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e)\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)
f)\(\sqrt{28-16\sqrt{3}}+\sqrt{73-40\sqrt{3}}\)
\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)
\(=-2+\sqrt{6}-3+2\sqrt{6}\)
\(=-5+3\sqrt{6}\)
\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)
\(=3-\sqrt{7}-2+2\sqrt{7}\)
\(=1+\sqrt{7}\)
\(\sqrt{28-16\sqrt{3}}+\sqrt{73-40\sqrt{3}}\)
\(=\sqrt{4^2-2.4.2\sqrt{3}+\left(2\sqrt{3}\right)^2}+\sqrt{5^2-2.5.4\sqrt{3}+\left(4\sqrt{3}\right)^2}\)
\(=\sqrt{\left(4-2\sqrt{3}\right)^2}+\sqrt{\left(5-4\sqrt{3}\right)^2}\)
\(=4-2\sqrt{3}-\left(5-4\sqrt{3}\right)\)
\(=4-2\sqrt{3}-5+4\sqrt{3}\)
\(=-1+2\sqrt{3}\)
\(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)\(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{\left(2\sqrt{2}-3\right)^2}+2\sqrt{2}\)
\(\sqrt{\left(\sqrt{10}-3\right)^2}+\sqrt{\left(\sqrt{10}-4\right)^2}\)
\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}\)
\(\sqrt{49a^2}+3a\)
\(3\sqrt{9a^6}-6a^3\)
\(\sqrt{\left(2\sqrt{2}-3\right)^2}+2\sqrt{2}=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3\)
\(\sqrt{\left(\sqrt{10}-3\right)^2}+\sqrt{\left(\sqrt{10}-4\right)^2}=\left|\sqrt{10}-3\right|+\left|\sqrt{10}-4\right|\)
\(=\sqrt{10}-3+4-\sqrt{10}=1\)
\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{3}+2\right|-\left|2-\sqrt{3}\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)
\(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)
\(=6-\sqrt{5}-6-\sqrt{5}=-2\sqrt{5}\)
\(A=\sqrt{49a^2}+3a=7\left|a\right|+3a\)
Nếu \(a\ge0\)thì: \(A=7a+3a=10a\)
Nếu \(a< 0\)thì: \(A=-7a+3a=-4a\)
\(B=3\sqrt{9a^6}-6a^3=9\left|a^3\right|-6a^3\)
Nếu \(a\ge0\)thì: \(B=9a^3-6a^3=3a^3\)
Nếu \(a< 0\)thì: \(B=-9a^3-6a^3=-15a^3\)
1. \(\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}\) .
2. \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}.}\)
3. \(\sqrt{11}-\sqrt{20-6\sqrt{11}}=3\)
4.\(\sqrt{41+12\sqrt{5}}-\sqrt{41-12\sqrt{5}}=2\sqrt{5.}\)
\(1.\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}=5+\sqrt{7}-\sqrt{7-2\sqrt{7}+1}=5+\sqrt{7}-\sqrt{7}+1=6\)
\(2.\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{3-2\sqrt{3}+1}=\sqrt{3}+1-\sqrt{3}+1=2\)
\(3.VT=\sqrt{11}-\sqrt{20-6\sqrt{11}}=\sqrt{11}-\sqrt{11-2.3\sqrt{11}+9}=\sqrt{11}-\sqrt{11}+3=3=VP\)
Vậy , đẳng thức được chứng minh .
\(4.VT=\sqrt{41+12\sqrt{5}}-\sqrt{41-12\sqrt{5}}=\sqrt{36+2.6\sqrt{5}+5}-\sqrt{36-2.6\sqrt{5}+5}=6+\sqrt{5}-6+\sqrt{5}=2\sqrt{5}=VP\)
Vậy , đẳng thức được chứng minh .
Rút gọn :
1, \(\sqrt{8}-3\sqrt{32}+\sqrt{72}\)
2, \(6\sqrt{12}-\sqrt{20}-2\sqrt{27}+\sqrt{125}\)
3 , \(3\sqrt{112}-7\sqrt{216}+4\sqrt{54}-2\sqrt{252}-3\sqrt{96}\)
4, \(3\sqrt{3}\left(3+2\sqrt{6}-\sqrt{33}\right)\)
6, \(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
7, \((5\sqrt{6}-4\sqrt{10}+7\sqrt{30}):\sqrt{2}\)
8, \(\left(2\sqrt{28}-3\sqrt{7}+5\sqrt{63}\right)\sqrt{112}\)
9, \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
10, \(\left(4\sqrt{27}-2\sqrt{48}-5\sqrt{75}\right):2\sqrt{3}\)
11, \(\left(1+\sqrt{3}-\sqrt{2}\right).\left(1+\sqrt{3}+\sqrt{2}\right)\)
các bạn ơi ! giúp mik với đi !