(3x+4y)^2
Cho đường thẳng (d): 3x−4y+5=03x-4y+5=0. Viết phương trình đường thẳng đi qua điểm M(2;1) và song song với đường thẳng d?
A. −3x−4y−2=0-3x-4y-2=0
B. Đáp án khác
C. 3x+4y−2=03x+4y-2=0
D. 3x−4y−2=0
Đường thẳng song song d nên nhận (3;-4) là 1 vtpt
Phương trình:
\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)
BÀI 10:XÁC ĐỊNH ĐƠN THỨC M ĐỂ
a) 2x^4y^4 + 3M= 3x^4y^4 - 2x^4y^4
b) x^2 - 2M= 3x^2
c) 3x^2y^3 + M= -x^2y^3
d) 7x^2y^2 - M= 3x^2y^2
a: =>3M+2x^4y^4=x^4y^4
=>3M=-x^4y^4
=>M=-1/3*x^4y^4
b: x^2-2M=3x^2
=>2M=-2x^2
=>M=-x^2
c: =>M=-x^2y^3-3x^2y^3=-4x^2y^3
d: =>M=7x^2y^2-3x^2y^2=4x^2y^2
Cho 3x-4y=7
CMR: 3x^2+4y^2 >=7
\(x=\frac{7+4y}{3}\Rightarrow3x^2+4y^2=3.\left(\frac{7+4y}{3}\right)^2+4y^2=\frac{\left(7+4y\right)^2}{3}+4y^2\)
\(=\frac{49+56y+16y^2+12y^2}{3}=\frac{49+56y+28y^2}{3}\)
\(=\frac{28.\left(\frac{7}{4}+2y+y^2\right)}{3}=\frac{28.\left(y^2+2y+1+\frac{3}{4}\right)}{3}=\frac{28\left(y+1\right)^2+21}{3}\)
\(\ge\frac{21}{3}=7\)
cách dễ nhất tính x theo y thế số vô làm
Khai triển
a) \(\left(2x-5y\right)^2\)
b) \(\left(3x+2y\right)^2\)
c) \(\left(3x+4y\right)\left(4y-3x\right)\)
Lời giải:
a. $=(2x)^2-2.2x.5y+(5y)^2=4x^2-20xy+25y^2$
b. $=(3x)^2+2.3x.2y+(2y)^2=9x^2+12xy+4y^2$
c. $=(4y+3x)(4y-3x)=(4y)^2-(3x)^2=16y^2-9x^2$
\(a.4x^2-10xy+25y^2\)
\(b.9x^2+6xy+4y^2\)
\(c.16y^2-9x^2\)
cho mình hỏi: nếu trong đa thức này sau khi bỏ ngoặc thì mình sẽ làm sao:
VD: (12xy^2+3x^2+4y^2)-(-6xy^2+3x^2+4y^2)
Có 2 đáp án cho các bạn lựa chọn:
A.12xy^2+3x^2+4y^2-6xy^2-3x^2-4y^2 (lưu ý trong đa thức, dấu trừ đằng trước ngoặc, khi bỏ ngoặc ta phải đổi dấu bên trong dấu ngoặc.)
B.12xy^2+3x^2+4y^2+6xy^2-3x^2-4y^2(vì - với - thành +)
mong các bạn giúp mình nhận biết A hay B đúng??? câu trả lời đúng sẽ nhận dc 1 đúng
cho 3x-4y=7.cmr \(3x^2+4y^2\ge7\)
Ta có: \(3x-4y=7\) \(\Rightarrow x=\dfrac{7+4y}{3}\)
Thay vào ta được:
\(3.\left(\dfrac{7+4y}{3}\right)^2+4y^2=3.\dfrac{49+56y+16y^2}{9}+4y^2\)
\(=\dfrac{147+168y+48y^2+36y^2}{9}=\dfrac{84y^2+168y+147}{9}=\dfrac{84\left(y^2+2y+\dfrac{7}{4}\right)}{9}=\dfrac{84\left(y+1\right)^2+63}{9}\ge\dfrac{63}{9}=7\)⇒ ĐPCM
tính
-4x.2xy^2+3x^2.1/3y+(-5)xy.(1/5xy)
4/3x^4y^7-3x^4y^7
2/3x^3y^4+3x^3y^4
A) \(-4x2xy^2+3x^2.\frac{1}{3}y+\left(-5\right)xy.\frac{1}{5}xy=-8x^2y^2+x^2y+\left(-x^2y^2\right)=-9x^2y^2+x^2y\)
B) \(\frac{4}{3}x^4y^7-3x^4y^7=\frac{-5}{3}x^4y^7\)
C) \(\frac{2}{3}x^3y^4+3x^3y^4=3\frac{2}{3}x^3y^4\)
CHÚC BN HỌC TỐT!!!
cho 3x-4y=7. Tìm Min B=3x2+4y2
Cho 3x=4y Tính H=2xy+3x2 /3xy+4y2
3x=4y
nên x/4=y/3
Đặt x/4=y/3=k
=>x=4k; y=3k
\(H=\dfrac{2xy+3x^2}{3xy+4y^2}=\dfrac{2\cdot4k\cdot3k+3\cdot16k^2}{3\cdot4k\cdot3k+4\cdot9k^2}\)
\(=\dfrac{24k^2+48k^2}{36k^2+36k^2}=1\)
Biết rằng 3x^2+4y^2=7xy .Tính F=(4y+2x)/(5y-7x)+(3x-2y)/(10y-4x)
3x2+4y2=7xy
<=> 3x2-3xy+4y2-4xy=0
<=> 3x(x-y)-4y(x-y)=0
<=> (3x-4y)(x-y)=0
<=> 3x-4y=0 hoặc x-y=0
<=> 3x=4y hoặc x=y
<=> y = \(\frac{3}{4}\)x hoặc x=y
+) y = \(\frac{3}{4}\)x, ta có:
F = \(\frac{4.\frac{3}{4}x+2x}{5.\frac{3}{4}x-7x}+\)\(\frac{3x-2.\frac{3}{4}x}{10.\frac{3}{4}x-4x}\)
F = \(\frac{5x}{-\frac{13}{4}x}+\frac{\frac{3}{2}x}{\frac{7}{2}x}\)
F = \(-\frac{20}{13}+\frac{3}{7}=-\frac{101}{91}\)
+) x = y, ta có:
F = \(\frac{4x+2x}{5x-7x}+\frac{3x-2x}{10x-4x}\)
F = \(\frac{6x}{-2x}+\frac{1x}{6x}=-3+\frac{1}{6}=-\frac{17}{6}\)
Từ \(3x^2+4y^2=7xy\Rightarrow3x^2+4y^2-7xy=0\)
\(\Rightarrow3x^2-4xy-3xy+4y^2=0\)
\(\Rightarrow x\left(3x-4y\right)-y\left(3x-4y\right)=0\)
\(\Rightarrow\left(x-y\right)\left(3x-4y\right)=0\)\(\Rightarrow\left[\begin{matrix}x=y\\x=\frac{4y}{3}\end{matrix}\right.\)
*)Xét \(x=y\) ta có \(F=\frac{4y+2y}{5y-7y}+\frac{3y-2y}{10y-4y}=\frac{6y}{-2y}+\frac{y}{6y}=-3+\frac{1}{6}=-\frac{17}{6}\)
*)Xét \(x=\frac{4y}{3}\) ta có \(F=\frac{4y+2\cdot\frac{4y}{3}}{5y-7\cdot\frac{4y}{3}}+\frac{3\cdot\frac{4y}{3}-2y}{10y-4\cdot\frac{4y}{3}}=\frac{4y+\frac{8y}{3}}{5y-\frac{28y}{3}}+\frac{4y-2y}{10y-\frac{16y}{3}}=\frac{-20}{13}+\frac{3}{7}=\frac{-101}{91}\)