Với các số thực x,y thỏa mãn 2x+y/x-y=1/2,tính P=x/y với y khác 0
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Cho x,y là các số thực thỏa mãn x/2=y/3. Tính giá trị của biểu thức sau: T=2x^2-y^2/2x^2+y^2
Giup mình với
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(T=\dfrac{2x^2-y^2}{2x^2+y^2}=\dfrac{2\left(2k\right)^2-\left(3k\right)^2}{2\left(2k\right)^2+\left(3k\right)^2}=\dfrac{8k^2-9k^2}{8k^2+9k^2}=\dfrac{-k^2}{17k^2}=\dfrac{-1}{17}\)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Help me please
Cho x,y là các số thực với a,b khác 0 thỏa mãn x^2+y^2-xy=4
Tìm giá trị nhỏ nhất và lớn nhất của P=x^2+y^2
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4.
\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)
Bài 3.
\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)
\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)
\(\Leftrightarrow12\left|x-1\right|=36\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)