Những câu hỏi liên quan
NV
Xem chi tiết
LM
17 tháng 4 2022 lúc 0:42

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

Bình luận (1)
LM
17 tháng 4 2022 lúc 0:48

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2

Bình luận (0)
VL
Xem chi tiết
H24
24 tháng 6 2021 lúc 19:12

a) đk: x\(\ge0\);

P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P = \(\dfrac{8}{9}\)

<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)

<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)

<=> \(-2x+5\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

c)

Đặt \(\sqrt{x}=a\) (\(a\ge0\))

P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)

Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)

Dấu "=" <=> a = -1 (loại)

=> Không tìm được Min của P

Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)

<=> \(P\le\dfrac{4}{3}\)

Dấu "=" <=> a = 1 <=> x = 1 (tm)

Bình luận (2)
NT
24 tháng 6 2021 lúc 20:39

a) ĐKXĐ: \(x\ge0\)

Bình luận (0)
NT
24 tháng 6 2021 lúc 20:42

b) Ta có: \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Ta có: \(P=\dfrac{8}{9}\)

nên \(36\sqrt{x}=27\left(x-\sqrt{x}+1\right)\)

\(\Leftrightarrow27x-27\sqrt{x}+27-36\sqrt{x}=0\)

\(\Leftrightarrow27x-63\sqrt{x}+27=0\)

 

Bình luận (0)
H24
Xem chi tiết
MY
9 tháng 10 2021 lúc 21:14

\(\forall x\in R\Rightarrow A=\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\Leftrightarrow A\left(x-2\sqrt{x}+9\right)=\sqrt{x}\)

\(\Leftrightarrow Ax-2A\sqrt{x}-\sqrt{x}+9A=0\)

\(\Leftrightarrow A\sqrt{x}^2-\sqrt{x}\left(2A+1\right)+9A=0\)

\(\Rightarrow\Delta\ge0\Rightarrow\left(2A+1\right)^2-36A^2=-32A^2+4A+1\ge0\Rightarrow-\dfrac{1}{8}\le A\le\dfrac{1}{4}\Rightarrow A\le\dfrac{1}{4}\Rightarrow MaxA=\dfrac{1}{4}\)

\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=9\)

Bình luận (0)
H24
Xem chi tiết
AH
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Bình luận (0)
AH
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Bình luận (0)
AH
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

Bình luận (0)
MA
Xem chi tiết
H24
27 tháng 6 2023 lúc 14:15

Xét A= \(\dfrac{x}{\sqrt{x+2yz}}\).\(\dfrac{1}{\sqrt{2}}\)=\(\dfrac{x}{\sqrt{2x+4yz}}\)=\(\sqrt{\dfrac{x.x}{2x+4yz}}\)

ta có x+y+z=\(\dfrac{1}{2}\)=> 2x+2y+2z= 1=> 2x+4yz= 4yz+1-2y-2z=(2y-1)(2z-1)
từ đó A= \(\sqrt{\dfrac{x}{2y-1}.\dfrac{x}{2z-1}}\)=\(\sqrt{\dfrac{x}{2y-2x-2y-2z}.\dfrac{x}{2z-2x-2y-2z}}\)
=\(\sqrt{\dfrac{x}{-2\left(x+y\right)}\dfrac{x}{-2\left(x+z\right)}}\)=\(\sqrt{\dfrac{1}{4}.\dfrac{x}{x+z}.\dfrac{x}{x+y}}\)=\(\dfrac{1}{2}\sqrt{\dfrac{x}{x+y}.\dfrac{x}{x+z}}\)
Áp dụng cô si  \(\sqrt{ab}\)\(\dfrac{a+b}{2}\) =>\(\dfrac{1}{2}\sqrt{ab}\)\(\dfrac{a+b}{4}\)ta được
A≤\(\dfrac{1}{4}\).(\(\dfrac{x}{x+y}\)+\(\dfrac{x}{x+z}\))
cmmt thì \(\dfrac{P}{\sqrt{2}}\)≤ \(\dfrac{1}{4}\).\(\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{y+x}+\dfrac{y}{y+z}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
               \(\dfrac{P}{\sqrt{2}}\)\(\dfrac{3}{4}\)=>P≤\(\dfrac{3.\sqrt{2}}{4}\)=\(\dfrac{3}{2\sqrt{2}}\)
Dấu"=" xảy ra <=> x=y=z=\(\dfrac{1}{6}\)

Bình luận (0)
L2
Xem chi tiết
AT
28 tháng 7 2021 lúc 18:11

\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right).\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

b) Ta có: \(x\ge0\Rightarrow x+\sqrt{x}+1\ge1\Rightarrow\dfrac{2}{x+\sqrt{x}+1}\le2\)

\(\Rightarrow max=2\) khi \(x=0\)

Bình luận (0)
NT
28 tháng 7 2021 lúc 22:59

Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Bình luận (0)
H24
Xem chi tiết
AK
Xem chi tiết
NT
29 tháng 6 2023 lúc 21:42

\(P=A:B=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

P>3/2

=>P-3/2>0

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)

=>\(\dfrac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)

=>-căn x+2>0

=>-căn x>-2

=>0<x<4

Bình luận (0)
H24
Xem chi tiết
NT
31 tháng 1 2024 lúc 0:44

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}-3+3}{\sqrt{x}-3}\)

\(=1+\dfrac{3}{\sqrt{x}-3}\)

\(\sqrt{x}-3>=-3\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{3}{\sqrt{x}-3}< =\dfrac{3}{-3}=-1\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{3}{\sqrt{x}-3}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ

=>P<=0 với mọi x thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

Bình luận (0)