Cho x,y,z,t>0 và xy+4zt+2yz+zxt=9 CMR \(\sqrt{xy}+2\sqrt{zt}\le3\)3
Cho x,y,z,t >0 thoã mãn: xy+4zt+2yz+2xt=9
Chứng minh: \(\sqrt{xy}+2\sqrt{zt}\le3\)
Lời giải:
Áp dụng BĐT Cauchy:
\(yz+xt\geq 2\sqrt{yzxt}\Rightarrow 2yz+2xt\geq 4\sqrt{yzxt}\)
Do đó:
\(9=xy+4zt+2yz+2xt\geq xy+4zt+4\sqrt{yzxt}\)
\(\Leftrightarrow 9\geq (\sqrt{xy}+2\sqrt{zt})^2\)
\(\Rightarrow 3\ge \sqrt{xy}+2\sqrt{zt}\) (đpcm)
Dấu "=" xảy ra khi \(yz=xt\)
ta có P=\(\frac{x^2}{\sqrt{xy+3x}}+...\ge\frac{\left(x+y+z\right)^2}{\sqrt{xy+3x}+...}=\frac{9}{\sqrt{xy+3x}+...}\)
mà \(\left(\sqrt{xy+3x}+...\right)^2\le3\left(xy+...+3x+...\right)\le3\left(3+9\right)=36\Rightarrow\sqrt{xy+3x}+...\le6\)
=>\(P\ge\frac{3}{2}\)
1.Giả sử a,b,c là 3 số dương sao cho ax+b(1-x)>cx(1-x) với mọi giá trị của x. CMR khi đó với mọi giá trị của x ta cũng có
ax+c(1-x)>bx(1-x) và bx+c(1-x)>ax(1-x)
2.Cho các số thực x,y,z >0. CMR
\(16xyz\left(x+y+z\right)\le3\sqrt[3]{\left(x+y\right)^4.\left(y+z\right)^4.\left(x+z\right)^4}.\)
3.Giải các bất phương trình sau
\(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}\sqrt{x}}\)
2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)
\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)
\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)
3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)
Dễ thấy
\(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)
Từ phương trình đầu ta có:
\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)
\(\Leftrightarrow y\le1\)
Vậy \(x=y=1\)
Thôi giúp 2 bài thôi còn bài còn lại tự làm cho lớn :D
Cho x,y,z > 0 ; x + y + z = 1
CMR: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\le\frac{3}{2}\)
Cho a, b, c > 0 và x + y + z = 3 .
CMR : \(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
cho x,y,z >0 thỏa \(x^2+y^2+z^2=3\) CMR
\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
solution:
ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )
\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)
\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)
tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)
cả 2 vế các BĐT đều dương,cộng vế với vế:
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)
Áp dụng BĐT bunyakovsky ta có:
\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow S\ge x^2+y^2+z^2\)
đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)
dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1
*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)
\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)
cho mình hỏi vs ạ..
Khi mình nhập câu hỏi ý,, làm sao để gửi câu hỏi cho m.n xem để giải đk hả bạn,..Chỉ giùm mik vs ạ.
Cho x, y, z >0 thỏa mãn x + y + z = 1
CMR: \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{zx}{zx+y}}\le\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
Cho x, y, z >0 thỏa mãn : xyz=1. CMR :
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^2+x^2}}{xz}\ge3\sqrt{3}\)
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)
=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)
ta có P=\(\frac{x^2}{x\sqrt{y+3}}+\frac{y^2}{y\sqrt{z+3}}+\frac{z^2}{z\sqrt{x+3}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y+3}+y\sqrt{z+3}+z\sqrt{x+3}}\)
mà \(\left(x\sqrt{y+3}+...\right)^2\le\left(x+y+z\right)\left(xy+yz+zx+3x+3y+3z\right)\le3\left(9+3\right)=36\) ( vì xy+yz+zx<=3)
=>\(x\sqrt{y+3}+...\le6\Rightarrow P\ge\frac{9}{6}=\frac{3}{2}\)
dấu = xảy ra <=> x=y=z=1