Lời giải:
Áp dụng BĐT Cauchy:
\(yz+xt\geq 2\sqrt{yzxt}\Rightarrow 2yz+2xt\geq 4\sqrt{yzxt}\)
Do đó:
\(9=xy+4zt+2yz+2xt\geq xy+4zt+4\sqrt{yzxt}\)
\(\Leftrightarrow 9\geq (\sqrt{xy}+2\sqrt{zt})^2\)
\(\Rightarrow 3\ge \sqrt{xy}+2\sqrt{zt}\) (đpcm)
Dấu "=" xảy ra khi \(yz=xt\)