Những câu hỏi liên quan
TH
Xem chi tiết
VT
29 tháng 11 2019 lúc 18:41

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
TH
29 tháng 11 2019 lúc 18:30

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

Bình luận (0)
 Khách vãng lai đã xóa
AH
29 tháng 11 2019 lúc 19:00

Bài 2:

CM vế thứ nhất:

Với $a,b,c,d>0$:

\(\left\{\begin{matrix} \frac{a}{a+b+c}>\frac{a}{a+b+c+d}\\ \frac{b}{b+c+d}>\frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}>\frac{c}{a+b+c+d}\\ \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\end{matrix}\right.\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)

CM vế thứ 2:

Xét hiệu \(\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{a(a+b+c+d)-(a+d)(a+b+c)}{(a+b+c)(a+b+c+d)}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0\) với mọi $a,b,c,d>0$

\(\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Hoàn toàn tương tự:

\(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}; \frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}; \frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}\)

Cộng theo vế:

\(\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2\)

Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
LF
Xem chi tiết
DD
2 tháng 2 2017 lúc 23:32

Thử Cauchy Schwarz dạng Engel xem

Bình luận (3)
TN
Xem chi tiết
Y
Xem chi tiết
NL
27 tháng 4 2019 lúc 16:16

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Bình luận (0)
Y
27 tháng 4 2019 lúc 14:57

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

Bình luận (0)
H24
14 tháng 5 2021 lúc 19:47

Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.

Bình luận (0)
H24
Xem chi tiết
TK
4 tháng 7 2019 lúc 16:13

Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)

\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)

..............................

=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)

Áp dụng bđt cosi ta có

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)

\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)

\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)

\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)

Cộng vế của các bđt trên và kết hợp với (1)

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Bình luận (0)
H24
Xem chi tiết
PD
Xem chi tiết
NA
Xem chi tiết
TN
24 tháng 7 2016 lúc 6:42

hình như là a2=bc mà bạn]

 

Bình luận (4)
TN
24 tháng 7 2016 lúc 15:57

hình như đề sai b2=ac ko pải a2=ad đâu

 

Bình luận (2)
NH
Xem chi tiết