Những câu hỏi liên quan
PC
Xem chi tiết
NT
10 tháng 2 2016 lúc 10:12

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

Bình luận (0)
NN
24 tháng 3 2021 lúc 21:10

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

Bình luận (0)
 Khách vãng lai đã xóa
TN
28 tháng 3 2021 lúc 21:52

cũng dễ thôi

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
BR
Xem chi tiết
GW
16 tháng 10 2021 lúc 12:36

a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)

Áp dụng t/c dãy tỏ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
GW
16 tháng 10 2021 lúc 12:39

b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
LN
Xem chi tiết
KR
17 tháng 4 2023 lúc 20:10

\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`

`-> x/2=y/5=z/3=2`

`-> x=2*2=4, y=2*5=10, z=2*3=6`

 

`x/5=y/3 -> x/25=y/15`

`y/5=z/4 -> y/15=z/12`

`x/25=y/15, y/15=z/12`

`-> x/25=y/15=z/12`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`

`-> x/25=y/15=z/12=1`

`-> x=25, y=15, z=12`

 

Bình luận (0)
NT
17 tháng 4 2023 lúc 20:03

a: x/y=2/5

=>x/2=y/5

y/z=5/3

=>y/5=z/3

=>x/2=y/5=z/3

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)

=>x=4; y=10; z=6

b: x/5=y/3

=>x/25=y/15

y/5=z/4

=>y/15=z/12

=>x/25=y/15=z/12

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)

=>x=25; y=15; z=12

Bình luận (0)
74
25 tháng 4 2024 lúc 13:27

Để giải hệ phương trình này, ta sẽ sử dụng phương pháp thay thế. 

Trước hết, ta sẽ giải hai phương trình đầu tiên để tìm x, y, và z.

Từ \( \frac{x}{3} = \frac{y}{5} \), ta có thể suy ra: 
\[ x = \frac{3y}{5} \]

Từ \( \frac{y}{2} = \frac{z}{4} \), ta có thể suy ra:
\[ y = \frac{2z}{4} = \frac{z}{2} \]

Bây giờ, ta có thể thay vào phương trình cuối cùng để tìm giá trị của x, y, và z.

Thay x và y vào phương trình:
\[ -2(\frac{3y}{5}) + y - z = -22 \]
\[ -\frac{6y}{5} + y - z = -22 \]
\[ y - \frac{6y}{5} - z = -22 \]
\[ \frac{5y - 6y}{5} - z = -22 \]
\[ -\frac{y}{5} - z = -22 \]
\[ -\frac{y}{5} = -22 + z \]
\[ y = 5(22 - z) \]

Thay y vào phương trình \( x = \frac{3y}{5} \), ta có:
\[ x = \frac{3(5(22 - z))}{5} \]
\[ x = 3(22 - z) \]

Thay y vào phương trình \( y = \frac{z}{2} \), ta có:
\[ z = 2y \]

Bây giờ, ta sẽ thay x, y, và z vào phương trình cuối cùng để tìm giá trị của z:
\[ -2x + y - z = -22 \]
\[ -2(3(22 - z)) + 5(22 - z) - z = -22 \]
\[ -2(66 - 2z) + 110 - 5z - z = -22 \]
\[ -132 + 4z + 110 - 6z = -22 \]
\[ -22 - 2z = -22 \]
\[ -2z = 0 \]
\[ z = 0 \]

Khi biết z = 0, ta có thể tìm giá trị của x và y:
\[ x = 3(22 - 0) = 66 \]
\[ y = 5(22 - 0) = 110 \]

Vậy, giải hệ phương trình ta được:
\[ x = 66, y = 110, z = 0 \]

 

Bình luận (0)
ER
Xem chi tiết
TC
1 tháng 12 2016 lúc 21:28

Ta có:\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{y}=\frac{30}{27}\Rightarrow\frac{x}{30}=\frac{y}{27}\left(1\right)\)

           \(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{z}=\frac{27}{36}\Rightarrow\frac{y}{27}=\frac{z}{36}\left(2\right)\)

                             Từ (1) và (2) suy ra:\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

          \(\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y+z}{30-27+36}=\frac{78}{39}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{30}=2\\\frac{y}{27}=2\\\frac{z}{36}=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Bình luận (0)
MA
Xem chi tiết
KL
5 tháng 12 2023 lúc 10:14

a) 3x = 7y ⇒ x/7 = y/3

⇒ x/7 = 2y/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2

x/7 = 2 ⇒ x = 2.7 = 14

y/3 = 2 ⇒ y = 2.3 = 6

Vậy x = 14; y = 6

b) x/2 = y/3 ⇒ x/6 = y/9 (1)

x/3 = z/4 ⇒ x/6 = z/8 (2)

Từ (1) và (2) ⇒ x/6 = y/9 = z/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1

x/6 = 1 ⇒ x = 1.6 = 6

y/9 = 1 ⇒ y = 1.9 = 9

z/8 = 1 ⇒ z = 1.8 = 8

Vậy x = 6; y = 9; z = 8

c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)

y/5 = z/4 ⇒ y/15 = z/12 (4)

Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1

2x/20 = 1 ⇒ x = 1.20 : 2 = 10

y/15 = 1 ⇒ y = 1.15 = 15

z/12 = 1 ⇒ z = 1.12 = 12

Vậy x = 10; y = 15; z = 12

Bình luận (0)
AN
Xem chi tiết
MN
Xem chi tiết
I7
21 tháng 12 2020 lúc 10:29

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

Bình luận (0)
LK
9 tháng 12 2021 lúc 21:28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bình luận (0)