cho pt x2 - 5x + 3 - m = 0
tìm m để pt có nghiệm x = -3
tìm nghiệm còn lại
Cho pt : x2 - 2(m-1)x + m -5 = 0
Tìm m để pt có 1 nghiệm bằng -1. tìm nghiệm còn lại
Lời giải:
Để pt có 1 nghiệm $x=-1$ thì:
$(-1)^2-2(m-1)(-1)+m-5=0$
$\Leftrightarrow 1+2(m-1)+m-5=0$
$\Leftrightarrow m=2$
Khi đó, pt trở thành:
$x^2-2x-3=0$
$\Leftrightarrow (x+1)(x-3)=0$
$\Leftrightarrow x=-1$ hoặc $x=3$
Vậy nghiệm còn lại là $x=3$
cho pt:2\(x^2\)-5x+m+1=0
Tìm m để pt có 2 nghiệm x1;x2 tm:2x1+3x2=4
Pt có 2 nghiệm khi: \(\Delta=25-8\left(m+1\right)\ge0\Rightarrow m\le\dfrac{17}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{m+1}{2}\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\2x_1+3x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7}{2}\\x_1=-1\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{m+1}{2}\Rightarrow\dfrac{m+1}{2}=-\dfrac{7}{2}\)
\(\Rightarrow m=-8\)
cho pt x^2-5x+m-2=0
Tìm m để pt có nghiệm thỏa mãn
a,x1=2x2
b,x1^+x2^2=6
c,x1^2-x2^2=5
d,|x1-x2|=14
a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)
Để phương trình có nghiệm thì -4m+33>=0
=>-4m>=-33
hay m<=33/4
Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-2\)
=>m-2=50/9
hay m=68/9
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow5^2-2\left(m-2\right)=6\)
=>25-2(m-2)=6
=>2(m-2)=19
=>m-2=19/2
hay m=23/2
d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)
\(\Leftrightarrow25-4\left(m-2\right)=196\)
=>4(m-2)=-171
=>m-1=-171/4
hay m=-163/4
bài 11:
Cho pt x2-5x+m+2=0
Tìm m để pt có 2 nghiệm pb thỏa mãn x12-x22=10
Bạn có thể tham khảo bài này. Hướng giải tương tự.
https://hoc24.vn/cau-hoi/cho-phuong-trinh-x2-4xm0m-la-tham-soa-tinh-cac-gia-tri-cua-m-de-phuong-trinh-co-cac-nghiem-x1x2-thoa-man-x1-x2-va-x22-x1218.6292592319064
Cho pt x2 -2(m-1)x+m+1=0
Tìm m để pt có 2 nghiệm phân biệt
PT có 2 nghiệm phân biệt
`<=>Delta'>0`
`<=>(m-1)^2-(m+1)>0`
`<=>m^2-2m+1-m-1>0`
`<=>m^2--3m>0`
`<=>m(m-3)>0`
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m-3>0\\\end{cases}\\\begin{cases}m<0\\m-3<0\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\begin{cases}m>0\\m>3\\\end{cases}\\\begin{cases}m<0\\m<3\\\end{cases}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}m>3\\m<0\end{array} \right.$
Vậy m>3 or m<0 thì PT có 2 nghiệm phân biệt
19) Tìm m để pt x2 - 5x + 2m +3 = 0 có 1 nghiệm x = 2 . Tìm nghiệm còn lại.
\(x=2\Leftrightarrow4-10+2m+3=0\Leftrightarrow m=\dfrac{3}{2}\\ \Leftrightarrow x^2-5x+6=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy nghiệm còn lại là 3
cho pt: x2-2(m-1)x+m2+2=0
Tìm giá trị của m để pt có 2 nghiệm x1;x2 TM x12 + x22 =10
PT có nghiệm `<=> \Delta' >=0`
`<=> (m-1)^2-(m^2+2)>=0`
`<=>-2m-1>=0`
`<=>m <= -1/2`
Viet: `x_1+x_2=2m-2`
`x_1x_2=m^2+2`
`x_1^2+x_2^2=10`
`<=>(x_1+x_2)^2-2x_1x_2=10`
`<=>(2m-2)^2-2(m^2+2)=10`
`<=> 2m^2-8m=10`
`<=>` \(\left[{}\begin{matrix}m=-1\left(TM\right)\\m=5\left(L\right)\end{matrix}\right.\)
Vậy `m=-1`.
Cho pt: (m+1)x2 - m3x + m3 - m = 0
Tìm m để pt trên có nghiệm duy nhất.
TH1: m=-1
=>x+(-1)^3-(-1)=0
=>x-1+1=0
=>x=0
=>Nhận
TH2: m<>-1
Δ=(-m^3)^2-4*(m+1)(m^3-m)
=m^6-4(m^4-m^2+m^3-m)
=m^6-4m^4+4m^2-4m^3+4m
Để phương trình có nghiệm duy nhất thì m^6-4m^4-4m^3+4m^2+4m=0
=>\(m\in\left\{\text{− 0.79168509 , 1.08715371 , 2.14211518}\right\}\)
cho phương trình ẩn x2 -5x+m-2=0
Tìm m để pt có 2 nghiệm dương phân biệt x1 x2 thõa mãn hệ thức
2(\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\))=3
Lời giải:
Để pt có 2 nghiệm dương phân biệt thì:
\(\left\{\begin{matrix} \Delta=25-4(m-2)>0\\ S=5>0\\ P=m-2>0\end{matrix}\right.\Leftrightarrow 2< m< \frac{33}{4}\)
Khi đó:
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\Leftrightarrow 4(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1x_2}})=9\)
\(\Leftrightarrow 4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
\(\Leftrightarrow 4(5t^2+2t)=9\) với $t=\frac{1}{\sqrt{m-2}}$
$\Rightarrow t=\frac{1}{2}$
$\Leftrightarrow m=6$ (thỏa)