Chương III - Hệ hai phương trình bậc nhất hai ẩn

QT

cho phương trình ẩn x-5x+m-2=0

Tìm m để pt có 2 nghiệm dương phân biệt x1 xthõa mãn hệ thức

2(\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\))=3

AH
30 tháng 5 2021 lúc 18:49

Lời giải:

Để pt có 2 nghiệm dương phân biệt thì:

\(\left\{\begin{matrix} \Delta=25-4(m-2)>0\\ S=5>0\\ P=m-2>0\end{matrix}\right.\Leftrightarrow 2< m< \frac{33}{4}\)

Khi đó:

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\Leftrightarrow 4(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1x_2}})=9\)

\(\Leftrightarrow 4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

\(\Leftrightarrow 4(5t^2+2t)=9\) với $t=\frac{1}{\sqrt{m-2}}$

$\Rightarrow t=\frac{1}{2}$

$\Leftrightarrow m=6$ (thỏa)

 

Bình luận (2)