Cho P(x)= x40-2012x39+2012x38+……..+2012x2-2012x+2012
Tính P(2011)
Tính giá trị của biểu thức :
A= x5 - 2012x4+ 2012x3- 2012x2 +2012x- 2012 tại x = 2011
Ta có: 2012=2011+1=x+1
\(A=x^5-2012x^4+2012x^3-2012x^2+2012x-2012\\ =x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\\ =x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\\ =-1\)
Cho đa thức
f(x)=x^6 - 2012x^5 + 2012x^4 -2012x^3 + 2012x^2 - 2012x + 2017
f(2011) =f(2011)= .
Bài làm:
Vì x=2011 => x+1=2012(*)
Thay (*) vào f(x) ta được:
f(2011) = x6 - (x+1)x5 + (x+1)x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 2017
f(2011) = x6 - x5 - x4 + x3 + x2 - x2 - x +2017
f(2011) = -x +2017
f(2011) = -2011 + 2017
f(2011) = 6
Học tốt!!!!
Cho x=2011. Tính giá trị của biểu thức:
\(B=x^{2011}-2012x^{2010}+2012x^{2009}-2012x^{2008}+....-2012x^2+2012x-1\)
Thay 2012 = x + 1
\(B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}+...-\left(x+1\right).x^2+\left(x+1\right).x-1\)
\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2011-1=2010\)
Cho \(x = 2011\) tính giá trị nguyên của:
\(x^{2011}-2012x^{2010}+2012x^{2009}-2012x^{2008}+.....-2012x^2+2012x-1\)
Giải:
Thay \(2012=x+1\) vào biểu thức ta có:
\(\Rightarrow B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}-...-\left(x+1\right).x^2+\left(x+1\right).x-1\)
\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^2+x^2+x-1\)
\(=x-1\)
\(\Rightarrow B=2011-1=2010\)
Vậy \(B=2010\)
Cho P(x)= x4 – 2012x3 + 2012x2 – 2012x + 2012. Tính P(2011)
Cho M(x)= x4-2012x3+2012x2-2012x+1. Tinh M(2011)
\(x=2011\Rightarrow2012=x+1\)
\(\Rightarrow M\left(2011\right)=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+1\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+1\)
\(=-x+1=-2011+1=-2010\)
Cho x=2011 . Tính giá trị của biểu thức :
\(B=x^{2011}-2012x^{2010}+12x^{2009}-...+2012x+1\)
cho 2012=x+1
B=x2012 - (x+1)x^2010+(x+1)x^2009-...+(x+1)x+1
B=x^2012-x^2012-x^2011+x^2011+x^2010-...+x^2+x+1
B=x+1=2012
Cho P(x)= x4 – 2012x3 + 2012x2 – 2012x + 2012. Tính P(2011)
x=2011 nên x+1=2012
\(P\left(x\right)=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+x+1\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1=1\)
x^10-2012x^9+2012^8-2012^7+2017^6-...-2012x+2012x tai x =2011