Những câu hỏi liên quan
ND
Xem chi tiết
LL
3 tháng 5 2017 lúc 15:26

nhờ casio và 1 số suy đoán  ta biết được max f(x) =7 khi x=0 ,giờ AM-GM ngược thôi :v

ta có: \(f\left(x\right)=\sqrt{\left(2x+3\right)\left(x+3\right)}+\sqrt{4\left(x+4\right)}-2x\)

Áp dụng bất đẳng thức cauchy :

\(\sqrt{\left(2x+3\right)\left(x+3\right)}\le\frac{1}{2}\left(3x+6\right)\)

\(\sqrt{4\left(x+4\right)}\le\frac{1}{2}\left(x+8\right)\)

\(\Rightarrow f\left(x\right)\le\frac{1}{2}\left(4x+14\right)-2x=2x+7-2x=7\)

đẳng thức xảy ra khi \(\hept{\begin{cases}2x+3=x+3\\4=x+4\end{cases}\Leftrightarrow x=0}\)

Bình luận (0)
ND
2 tháng 5 2017 lúc 22:54

Còn ý liền trước nó nữa: 

Tìm tất cả các cặp số (x, y)  thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)

LÀM GIÚP MK CÂU TÌM GTLN NHA

HELP ME, PLEASE!

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
H9
2 tháng 10 2023 lúc 5:44

a) \(\sqrt{x-2}+\dfrac{1}{x-5}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)

b) \(\sqrt{\left(2x-6\right)\left(7-x\right)}=\sqrt{2\left(x-3\right)\left(7-x\right)}\) có nghĩa khi:

\(\left(x-3\right)\left(7-x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\7-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x\ge7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow3\le x\le7\)

c) \(\sqrt{4x^2-25}=\sqrt{\left(2x-5\right)\left(2x+5\right)}\) có nghĩa khi:

\(\left(2x-5\right)\left(2x+5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\2x+5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ge-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\)

d) \(\dfrac{2}{x^2-9}-\sqrt{5-2x}=\dfrac{2}{\left(x+3\right)\left(x-3\right)}-\sqrt{5-2x}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\5-2x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

e) \(\dfrac{x}{x^2-4}+\sqrt{x-2}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}+\sqrt{x-2}\) có nghĩa khi:

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow x>2\)

 

Bình luận (0)
QA
Xem chi tiết
NL
5 tháng 2 2021 lúc 2:12

\(A=2x\left(6-x\right)\le\dfrac{1}{2}\left(x+6-x\right)^2=18\)

Dấu "=" xảy ra khi \(x=3\)

\(B^2=x^2\left(9-x\right)=-x^3+9x^2\)

\(B^2=-x^3+9x^2-108+108=108-\left(x-6\right)^2\left(x+3\right)\le108\)

\(\Leftrightarrow B\le6\sqrt{3}\)

\(C^2=\left(6-x\right)^2x=32-\left(8-x\right)\left(x-2\right)^2\le32\)

\(\Rightarrow C\le4\sqrt{2}\)

Bình luận (0)
NA
Xem chi tiết
RH
6 tháng 10 2021 lúc 21:16

1) a) x<=11/2

b) x>=2

c) x#0

d) x>7

 

Bình luận (0)
NM
6 tháng 10 2021 lúc 21:17

\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)

Bình luận (2)
NT
6 tháng 10 2021 lúc 21:21

Bài 2:

a: \(\sqrt{16x^2}-2x^2=4x-2x^2\)

c: \(\sqrt{\left(x-5\right)^2}-4x=5-4x-x=5-5x\)

Bình luận (0)
NT
Xem chi tiết
LN
Xem chi tiết