Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
MY
12 tháng 6 2021 lúc 12:25

\(m^2+n^2+2\ge2\left(m+n\right)< =>m^2+n^2+2-2m-2n\ge0\)

\(< =>m^2-2m+1+n^2-2n+1\ge0\)

\(< =>\left(m-1\right)^2+\left(n-1\right)^2\ge0\)(luôn đúng \(\forall m,n\))

dấu'=' xảy ra<=>m=n=1

vậy \(m^2+n^2+2\ge2\left(m+n\right)\)

Bình luận (0)
PD
12 tháng 6 2021 lúc 12:30

Bổ sung: $m,n$ là hai số không âm

$m^2+n^2+2\\=(m^2+1)+(n^2+1)$

Áp dụng BĐT Cô si với các số dương

$m^2+1\ge 2\sqrt{m^2.1}=2m\\n^2+1\ge 2\sqrt{n^2.1}=2n$

Cộng các vế của BĐT

$\Rightarrow m^2+1+n^2+1\ge 2m+2n\\\Leftrightarrow m^2+n^2+2\ge 2(m+n)$

$\Rightarrow $ Dấu "=" xảy ra khi $\begin{cases}m^2=1\\n^2=1\end{cases}$

Mà $m,n$ là hai số dương

$\Rightarrow m=n=1$

Vậy BĐT được chứng minh

Bình luận (1)
TT
Xem chi tiết
TH
Xem chi tiết
TT
25 tháng 2 2020 lúc 16:40

Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :

\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)

\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow bm=an\)

Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .

Bình luận (0)
 Khách vãng lai đã xóa
TU
Xem chi tiết
NL
23 tháng 3 2019 lúc 8:44

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Bình luận (0)
NL
23 tháng 3 2019 lúc 8:56

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

Bình luận (0)
NL
23 tháng 3 2019 lúc 8:58

Câu 5: Biến đổi tương đương:

\(\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab\right)^2+2abcd+\left(cd\right)^2\le\left(ab\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(cd\right)^2\)

\(\Leftrightarrow\left(ad\right)^2-2ad.bc+\left(bc\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)

Vậy ta có điều phải chứng minh

Bình luận (0)
DL
Xem chi tiết
AP
Xem chi tiết
NL
22 tháng 10 2019 lúc 18:07

Đề bài sai bạn, \(a=0;b=c=-\sqrt{3}\) thì \(a^2+b^2+c^2=6\)\(a+b+c< 0\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NL
17 tháng 6 2020 lúc 19:38

a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

b/ \(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\) (hiển nhiên đúng)

d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(m=n=1\)

e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Bình luận (0)
H24
Xem chi tiết
H24
6 tháng 2 2020 lúc 10:41

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\\ \frac{1}{3^2}< \frac{1}{2\cdot3}\\ \frac{1}{4^2}< \frac{1}{3\cdot4}\\ ...\\ \frac{1}{n^2}< \frac{1}{\left(n-1\right)\cdot n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\left(\text{với }n\in N;n\ge2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết