so sánh 32022 và 10*32020
1) Chứng minh rằng: 32022 + 32020 – 22020 - 22020 chia hết cho 10
Lời giải:
$3^{2022}+3^{2020}-(2^{2020}+2^{2020})$
$=3^{2020}(3^2+1)-2.2^{2020}=10.3^{2020}-2^{2021}$
Ta thấy: $10.3^{2020}\vdots 10$, còn $2^{2021}\not\vdots 10$ nên $10.3^{2020}-2^{2021}\not\vdots 10$
Bạn xem lại đề.
Thu gọn C, biết :
C = 32023 - 32022 + 32021 - 32020 + 32019 - ... - 32 + 3.
Giúp mình với!
Bài 1 so sánh
a) M = (-3)2020 -32020 và 0
b) M = (-3)2021 +32020 và N = [ (-3)]0
`@` `\text {Ans}`
`\downarrow`
`a)`
Ta có: `2020` là lũy thừa bậc chẵn
`=>`\(\left(-3\right)^{2020}=3^{2020}\)
`M = `\(3^{2020}-3^{2020}=0\)
`=> 0 = 0`
`=> M = N`
`b)`
`M =`\(\left(-3\right)^{2021}+3^{2020}\)
`=`\(3^{2020}-3^{2021}\)
Vì \(3^{2021}>3^{2020}\)
`=>`\(3^{2020}-3^{2021}< 0\)
`N = [ (-3)]^0`
`= (-3)^0`
`= 1`
Vì `1 > 0`
`=> M < N.`
`@` `\text {Duynamlvhg}`
a: M=3^2020-3^2020=0
b: M=-3^2021+3^2020=-3^2020(3-1)=-3^2020*2<0
N=[(-3)]^0=1
=>M<N
so sánh A và B với A = 1 + 3 + 32 + ... +32022 + 32023 và B = 32024 - 1
A = 1 + 3 + 3² + ... + 3²⁰²³
⇒ 3A = 3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴
⇒ 2A = 3A - A
= (3 + 3² + 3³ + ... + 3²⁰²³ + 3²⁰²⁴) - (1 + 3 + 3² + ... + 3²⁰²³)
= 3²⁰²⁴ - 1
⇒ A = (3²⁰²⁴ - 1) : 2
⇒ A < B
A=1+3+32+33+34+........+32022+32023
3A=3+32+33+............+32023+32024
3A-A=(3+32+33+..........+32023+32024
A=1+3+32+...+32022+32023
3A=3+32+33+...+32023+32024
3A-A=(3+32+33+...+32023+32024)-(1+3+32+...+32022+32023)
2A=32024-1
A=(32024-1):2
ta thấy 32024-1 lớn hơn (32024-1):2
vậy B lớn A
anh tai sadboy
bài 1:cho S = 1+2+22+23+...+22023
a. tính tổng
b.cho B = 22024 so sánh S và B
bài 2: tính tổng H=3+32+33+...+32022
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Bài 2
H = 3 + 3² + 3³ + ... + 3²⁰²²
⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³
⇒2H = 3H - H
= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)
= 3²⁰²³ - 3
⇒ H = (3²⁰²³ - 3) : 2
cho tổng a=1/3+2/32+3/33+4/34+.....+2022/32022.So sánh với 3/4
(32021+ 32020):32020
`#3107`
\(\left(3^{2021}+3^{2020}\right)\div3^{2020}\\ =3^{2021}\div3^{2020}+3^{2020}\div3^{2020}\\ =3^{2021-2020}+3^{2020-2020}\\ =3+1=4\)
\(...\dfrac{3^{2021}+3^{2020}}{3^{2020}}\\ =\dfrac{3^{2019}.\left(3^2+3\right)}{3^{2019}.3}\\ =\dfrac{3^2+3}{3}\\ =\dfrac{9+3}{3}\\ =\dfrac{12}{3}\\ =4.\)
A = 1+32+34+36+........+32020. chứng tỏ A chia hết cho 10
A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020
= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020
= 10.(1+3^4+...+3^2016) + 3^2020
Mà : 3^n có tận cùng là : 1,3,9,7
Do đó 3 ^2020 không chia hết cho 10
Lại có 10.(1+3^4+...+3^2016) chia hết cho 10
=> A không chia hết cho 10
A=(1+32)+(34+36)+ ... + (32018+32020)
=(1+32)+ 34(1+32)+....+32018(1+32)
=(1+32) (1+34+....+32018)
=10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)
Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)
\(A=1+3^2+3^4+3^6+...+3^{2020}\\=(1+3^2)+(3^4+3^6)+(3^8+3^{10})+...+(3^{2018}+3^{2020})\\=10+3^4\cdot(1+3^2)+3^8\cdot(1+3^2)+...+3^{2018}\cdot(1+3^2)\\=10+3^4\cdot10+3^8\cdot10+..+3^{2018}\cdot10\\=10\cdot(1+3^4+3^8+...+3^{2018})\)
Vì \(10\cdot(1+3^4+3^8+...+3^{2018})\vdots10\)
nên \(A\vdots10\)
1. Cho A = \(\dfrac{10^{2013}+1}{10^{2014}+1}\) và B = \(\dfrac{10^{2014}+1}{10^{2015}+1}\). Hãy so sánh A và B
2. so sánh ; 2\(^{332}\) và 3\(^{223}\)
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)