Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 10 2019 lúc 7:33

Bình luận (0)
H24
Xem chi tiết
NM
16 tháng 5 2021 lúc 12:12

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

Bình luận (0)
H24
Xem chi tiết
NL
14 tháng 12 2020 lúc 22:39

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:44

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:55

3.

Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)

\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)

\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)

Mặt khác:

\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)

\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)

(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)

Bình luận (0)
NL
Xem chi tiết
NL
23 tháng 2 2021 lúc 23:42

Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)

Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)

\(\Leftrightarrow m+1>0\Rightarrow m>-1\)

\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)

Vậy không tồn tại m thỏa mãn yêu cầu đề bài

Bình luận (0)
H24
Xem chi tiết
HX
25 tháng 11 2023 lúc 20:59

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

Bình luận (0)
CL
Xem chi tiết
NL
22 tháng 3 2022 lúc 23:39

a.

Pt có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\) 

\(\Rightarrow m\ne-1\)

b.

BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x

- Với \(m=-1\) ko thỏa mãn

- Với \(m=5\) thỏa mãn

- Với \(m\ne\left\{-1;5\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)

Kết hợp lại ta được: \(2< m\le5\)

Bình luận (0)
VK
Xem chi tiết
H9
16 tháng 1 2024 lúc 18:23

Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)

Do pt có nghiệm là x = -2 nên thay vào pt ta có: 

\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)

\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)

\(\Leftrightarrow6m+6+m^2-9m-4=0\)

\(\Leftrightarrow m^2-3m+2=0\)

\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)

Nếu m = 1 thì pt là: 

\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)

\(\Leftrightarrow x^2-6x-16=0\)

Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\) 

Nếu m = 2 thì pt là:

\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)

\(\Leftrightarrow2x^2-9x-26=0\)  

Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)

Bình luận (1)
PL
Xem chi tiết
NM
13 tháng 12 2021 lúc 22:16

\(ĐK:x\ne-1\)

\(\dfrac{m+1}{x+1}=m^2+3m+2=\left(m+1\right)\left(m+2\right)\\ \Leftrightarrow x+1=\dfrac{m+1}{\left(m+1\right)\left(m+2\right)}=\dfrac{1}{m+2}\\ \Leftrightarrow x=\dfrac{1}{m+2}-1=\dfrac{-m-1}{m+2}\)

Nghiệm âm \(\Leftrightarrow x< 0\Leftrightarrow\dfrac{-m-1}{m+2}< 0\Leftrightarrow\dfrac{m+1}{m+2}>0\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)

Mà \(x\ne-1\Leftrightarrow\dfrac{m+1}{m+2}\ne1\Leftrightarrow m+1\ne m+2\left(\text{luôn đúng}\right)\)

Vậy \(m>-1;m< -2\)

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 3 2023 lúc 22:53

Bài 2:

Gọi số ban đầu là \(\overline{ab}\)

Theo đề, ta có: 5a+2b=29 và 10b+a-10a-b=36

=>5a+2b=29 và -9a+9b=36

=>a=3 và b=7

Bình luận (0)