cho pt xy=600 và pt (x-4)(y-4)=416 Hãy lập hpt tìm x,y
1. Giải hpt\(\left\{{}\begin{matrix}\dfrac{3y}{x-1}+\dfrac{2x}{y+1}=3\\\dfrac{2y}{x-1}-\dfrac{5x}{y+1}=2\end{matrix}\right.\)
2.Cho PT : x2-6x+2m-3=0
-Tìm m để PT có nghiệm x1,x2 thỏa : (x12-5x1+2m-4)(x22-5x2+2m-4)=2
Cho hệ pt : \(\left\{{}\begin{matrix}mx+3y=4\\2x-my=-3\end{matrix}\right.\)
a) Tìm m để HPT có vô số nghiệm
b) Với giá trị nào của m thì nghiệm của HPT thỏa mãn x<0 và y>0
Giải pt và hpt:
a) hpt:
\(\left\{{}\begin{matrix}x+y+xy=11\\x^{2\:}+y^{2\:}-x-y=8\end{matrix}\right.\)
b) pt:\(\left(x+8\right)\sqrt{2x^2-4x\: }=2x^2-2x+12\: \)
a) hpt \(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=11\\\left(x+y\right)^2-2xy-\left(x+y\right)=8\end{matrix}\right.\)
Đặt S=x+y; P =xy, ta có hệ :
\(\left\{{}\begin{matrix}S+P=11\\S^2-S-2P=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=11-S\\S^2-S-2\left(11-S\right)=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=11-S\\S^2+S-30=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=11-S\\\left[{}\begin{matrix}S=5\\S=-6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=11-\left(x+y\right)\\\left[{}\begin{matrix}x+y=5\\x+y=-6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\curlyvee\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\\\text{hệ vô nghiệm}\end{matrix}\right.\)
Vậy...
b)ĐK : \(\left\{{}\begin{matrix}x\le0\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{2x^2-4x}-4=\frac{2x^2-2x+12}{x+8}-4\)
\(\Leftrightarrow\frac{2x^2-4x-16}{\sqrt{2x^2-4x}+4}=\frac{2x^2-6x-20}{x+8}\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+2\right)}{\sqrt{2x^2-4x}+4}=\frac{\left(x-5\right)\left(x+2\right)}{x+8}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\\frac{x-4}{\sqrt{2x^2-4x}+4}=\frac{x+5}{x+8}\left(1\right)\end{matrix}\right.\)
Giải tiếp pt 1 và kết hợp vs đk t tìm được nghiệm
1.cho hệ PT:
\(\left\{{}\begin{matrix}x^2+y^2=2\left(m+1\right)\\\left(x+y\right)^2=4\end{matrix}\right.\)
xác định m để hệ PT có nghiệm duy nhất
2. giải HPT
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
- giúp ạ !
giải pt và hpt:
\(x\left(x+2\right)^2=\frac{5}{x+4}\)
\(\hept{\begin{cases}2x^2-xy-y^2+2x+y\\\sqrt{x+y}+\sqrt{3x+y}=2\end{cases}}\)
VÌ TƯƠNG LAI CON EM SAU NÀY PLEASE HELP ME !!!!!!!!!
Câu 1 quy đồng đặt x^2 +4x+2 =a đưa về (a+3)(a-3) =0
Câu 2 phân tích pt 1 đc (2x+y)(x-+1)=0
Giải các hệ pt và các pt sau:
1. (x+1)(y-1)=xy+4 (1)
(2x-4)(y+1)=2xy+5(2)
2. \(x^2+x-2\sqrt{x^2+x+1}+2=0\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
cho hệ pt (m-1)x+2y=m+1 và x-y=2 tìm m để hệ pt có nghiệm duy nhât (x;y) thoả mãn xy>0
\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:
\(\left(m-1\right)x+2\left(x-2\right)=m+1\)
\(\Leftrightarrow\left(m+1\right)x=m+5\)
Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\). \(\Rightarrow x=\dfrac{m+5}{m+1}\)
\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).
Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).
Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)
Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)
Giải pt và hpt
\(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)
Giải pt và hpt:
1)\(x^2= \sqrt{x^3-x^2}+ \sqrt{x^2-x}\)
2)\(\left\{\begin{matrix}\frac{1}{x}+ \frac{1}{y} + \frac{1}{z}=2 \\ \frac{2}{xy} - \frac{1}{z^2} =4\end{matrix}\right.\)