(1-2x)/(1-x)+(1-2y)/(1-y)=1
Cm M=x^2+y^2-xy là bình phương của một số hữu tỉ
Cho x, y là số hữu tỉ khác 1 thỏa mãn: \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
Chứng minh \(M=x^2+y^2-xy\) là bình phương của một số hữu tỉ
Cho x, y là các số hữu tỉ khác 1 thỏa mãn: \(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
Chứng minh rằng: \(_{M=x^2+y^2-xy}\)là bình phương của một số hữu tỉ
ta có
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)
\(\Leftrightarrow1-2\left(x+y\right)+3xy=0\)
Vậy \(M=x^2+y^2-xy+\left(1-2\left(x+y\right)+3xy\right)=\left(x+y+1\right)^2\)
vậy ta có đpcm
Cho x,y là các số hữu tỉ khác -1 thỏa mãn:
\(\frac{1-2x}{1-x}=\frac{1-2y}{1-y}=1\)
Chứng minh: \(x^2+y^2-xy\)là bình phương của một số hữu tỉ.
\(\frac{1-2x}{1-x}=1\)
\(\Leftrightarrow1-x=1-2x\)
\(\Leftrightarrow-x+2x=1-1\)
\(\Leftrightarrow x=0\)
Tương tự ta cũng có \(y=0\)
Khi đó : \(x^2+y^2-xy=0^2+0^2-0\cdot0=0=0^2\left(đpcm\right)\)
Sai đề ạ:
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
Cho x,y là số hữu tỉ khác 1 thỏa mãn(1-2x)/(1-x)+(1-2y)/(1-y)=1
Chứng minh: M=x^2+y^2-xy là bình phương của một số hữu tỉ.
Cho x,y là số hữu tỉ khác 1 thỏa mãn(1-2x)/(1-x)+(1-2y)/(1-y)=1
Chứng minh: M=x^2+y^2-xy là bình phương của một số hữu tỉ
ta có : \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\Leftrightarrow3xy-2x-2y+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(đpcm\right)\)
phương trình này hình như chỉ có 2 nghiệm này là hữu tỉ thôi phải không , nếu ai phát hiện còn nữa nói cho mk bt nha .
cho x,y là các số hữu tỉ thoả mãn \(\dfrac{\text{1-2x}}{\text{1-x}}+\dfrac{\text{\text{1-2y}}}{\text{1-y}}\) cmr x^2+y^2 -xy là bình phương một số hữu tỉ
chuyên đề ; Số cp
cho x,y,z thuộc Q t/m: x^2+y^2+z^2=2*(xy+yz+zx)
chứng minh:xy là bình phương của 1 số hữu tỉ (biết xy+yz+zx là bình phương của 1 số hữu tỉ) giúp mình với mọi người
Cho x,y là các số hữu tỉ khác 1 thỏa mãn :
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
Chứng minh rằng M= x2+y2-xy là bình phương của một số hữu tỉ
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
\(\Leftrightarrow\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-x\right)=\left(1-x\right)\left(1-y\right)\)
\(\Leftrightarrow1-2x-2y+3xy=0\)
\(\Rightarrow-xy=2xy-2x-2y+1\)
\(\Rightarrow M=x^2+y^2+2xy-2x-2y+1=\left(x+y-1\right)^2\) (đpcm)
cho 1 số hữu tỉ khác 1 thỏa mãn \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
CM x^2+y^2-xy là bình phương của 1 số hữu tỉ