HL

(1-2x)/(1-x)+(1-2y)/(1-y)=1

Cm M=x^2+y^2-xy là bình phương của một số hữu tỉ

H9
10 tháng 2 2023 lúc 17:23

Ta có:

\(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)

\(\Leftrightarrow\dfrac{\left(1-2x\right)\left(1-y\right)+\left(1-2y\right)\left(1-2x\right)}{\left(1-x\right)\left(1+y\right)}=1\)

\(\Leftrightarrow1-y-2x+2xy+1-x-2y+2xy=1+xy-x-y\)

\(\Leftrightarrow2x+2y-1=3xy\)

Khi đó:

\(M=x^2+y^2-xy\)

\(M=\left(x^2+y^2+2xy\right)-3xy\)

\(M=\left(x+y\right)^2-3xy\)

Thay \(3xy=2x+2y-1\)  ta được:

\(M=\left(x+y\right)^2-2x+2y-1\)

\(M=\left(x+y\right)^2-2\left(x+y\right)-1\)

\(M=\left(x+y-1\right)^2\)

Vậy \(M=\left(x+y-1\right)^2\)  là bình phương của một số hữu tỉ

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
NQ
Xem chi tiết
NH
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
TD
Xem chi tiết
HL
Xem chi tiết