|2x+4|+(y+2)^2=0
(2x-8)^4+(3y+45)^2=0
(2x-10)^6+(x+y-7)^4=0
(5x-15)^8+(2x-y+4)^4=0
(2x-8)^4+(3y+45)^2=0
* a mũ 2 hay 4 hay 6 ,... ( những số tự nhiên chẵn khác 0 ) đều lớn hơn hoặc bằng 0 với mọi a
Áp dụng :
a) (2x-8)^4 + (3y+45)^2 = 0
Vì : (2x-8)^4 >=0 , (3y+45)^2 >=0 với mọi x,y
=> (2x-8)^4 + (3y+45)^2 >=0
Dấu "=" xảy ra khi : 2x-8=3y+45=0
->(x;y)=(4;-15)
Những câu sau làm tương tự, ta được :
b) ...
Dấu "=" xảy ra khi : 2x-10=0 và x+y-7=0
->x=5 và 5+y-7=0
->(x;y)=(5;2)
c) 5x-15=0 và 2x-y+4=0
->x=3 và 6-y+4=0
->(x;y)=(3;10)
d) Trùng câu a
a)x=4,y=-15
b)x=5,y=2
còn câu c) mik chịu
Câu 26. Cho hai đường tròn (C):(x-2)^ 2 +(y-2)^ 2 =9;(C' ):x^ 2 +y^ 2 +4x-8y+11=0 ,biết (C) và (C') đối xứng nhau qua đường thẳng (a) .Phương trình của (a) là : A. 2x + 2y - 4 = 0 B.2x-y+3=0 . C. x + y - 4 = 0 . D. 2x + 2y = 0 .
tìm x,y bt
a,(x-1)^2+(2x+y-1)^4=0
b,x^2+2xy+3y^2=0
c,2x^2+2x+y^2-2xy+1=0
Đề bài: Tìm x,y,z biết:
1. | x + 1 | + y mũ 2 + 4y + 4 = 0
2. 4x mũ 2 + 9y mũ 2 + 2 ( 2x - 3y + 1 ) = 0
3. 2x ( x - 1 - y ) + y mũ 2 + 1 = 0
4.x mũ 2 + 5y mũ 2 + 4 ( 1 + y - xy ) = 0
5. | 2x - 1 | + y mũ 2 - y + 1/4 = 0
6. x mũ 2 + y mũ 2 + 4x + 6y + 13 = 0
Các bn giúp mk nhé, mk sẽ tick cho các bn!!!!!!!!!!!!11
1. | x + 1| + (y + 2)2 = 0
Mà (y + 2)2 \(\ge\) 0
Đẳng thức khi . y + 2 \(\ge\) 0
y \(\ge\) - 2
. x + 1 = 0
. x = -1
\(\left\{{}\begin{matrix}4\left(2x-y\right)^2-4\left(x^2-y^2\right)-3\left(2x-y\right)^2=0\\2x+y-\frac{2}{2x-y}=2\end{matrix}\right.\)
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
Xét pt:
\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)
TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)
\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)
\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)
TH2: \(y=6-x\) thế vào...
\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)
\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
mấy bn check hộ mk, nếu sai hãy chỉ ra giùm và sử lại nhé,
A=|x-2|+|2x-3|+|3x-4| ap dung BĐT|x|+|y|>=|x+y| |x-2|+|3x-4|=|x-2|+|4-3x|>=|x-2+4-3x|=|-2x-2| =)A= |x-2|+|4-3x|+|2x-3|>=|-2x+2|+|2x-3|>=|-2x+2+2x-3| =|-1|=1 dau = xay ra khi (x-2)(4-3x)>=0 va (-2x+2)(2x-3)>=0 =)4/3
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)
\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)
Thế vào pt dưới:
\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết
cho x,y>0 và \(2x^2+2xy+y^2-2x\le8\). tìm GTNN của \(P=\dfrac{2}{x}+\dfrac{4}{y}-2x-3y\)
Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).
Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)
\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).
Vậy...
Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.
Bài 2: Tìm x , y biết
a) ( 2x + 3 )^2 - ( x - 2 )^2 = 0
b)3x.( x - 1) - (1 - x) = 0
c) x^5 - x^3 - x^2 + 1 = 0
d) 2x^3 + 2x + x^2 + 1 = 0
e) x^3 + x^2 - 4x = 4
f) (y + 1).( 2 - y ) + ( y - 2 )^2 + y^2 - 4 = 0
# Mong mọi người giải hết giúp mình nha #