Cho A=\(\dfrac{x^3-4x^2+4x}{x^2-4}\)
a) Rút gọn A
b) Tìm x nguyên để A có giá trị nguyên
A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
a, \(A=\dfrac{4x^2+2x^2+5x+3-9}{9x^2-4}=\dfrac{6x^2+5x-6}{9x^2-4}=\dfrac{\left(3x-2\right)\left(2x+3\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{2x+3}{3x+2}\)
b, Ta có \(6x+9⋮3x+2\Leftrightarrow2\left(3x+2\right)+5⋮3x+2\Rightarrow3x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
3x+2 | 1 | -1 | 5 | -5 |
x | loại | -1 | 1 | loại |
Cho biểu thức
\(A=\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}+\dfrac{x^2+4x}{4-x^2}\left(x\ne\pm2\right)\)
a) Rút gọn A
b) Tính giá trị của biểu thức A khi x = 4
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên dương
cho biểu thức: A= 2x^2-4x+2 / x^3-x^2-(x-1)
a) Rút gọn A
b) tính giá trị cảu A khi x=5
c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
bài 13 cho M=\(\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x^2+4x}{x^2-4}\)
a,tìm điều kiện xác định của biểu thức M
b,rút gọn M
c, tìm các giá trị nguyên của a để M nhận giá trị nguyên
a)
\(ĐKXĐ:\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b)
\(\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x^2+4x}{x^2-4}\)
\(=\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x+2}{x-2}\)
c)
\(\dfrac{x+2}{x-2}=\dfrac{x-2+4}{x-2}=\dfrac{x-2}{x-2}+\dfrac{4}{x-2}=1+\dfrac{4}{x-2}\)
vậy M nhận giá trị nguyên thì 4⋮x-2
=> x-2 thuộc ước của 4
\(Ư\left(4\right)\in\left\{-1;1;-2;2;;4;-4\right\}\)
ta có bảng sau
x-2 | -1 | 1 | -2 | 2 | 4 | -4 |
x | 1(tm) | 3(tm) | 0(tm) | 4(tm) | 6(tm | -2(loại) |
cho phân thức:
A=x^4-5x^2+4/x^4-x^2+4x-4
a) Rút gọn A
b) Tìm x để A nhận giá trị nguyên
\(a,A=\dfrac{x^4-5x^2+4}{x^4-x^2+4x-4}=\dfrac{x^4-x^2-4x^2+4}{x^2\left(x-1\right)\left(x+1\right)+4\left(x-1\right)}\\ A=\dfrac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{\left(x-1\right)\left(x^2+x+4\right)}\\ A=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2-4\right)}{\left(x-1\right)\left(x^2+x+4\right)}=\dfrac{\left(x+1\right)\left(x^2-4\right)}{x^2+x+4}=\dfrac{x^3+x^2-4x-4}{x^2+x+4}\)
Cho A = ( x / x^2 - 16 - x - 4/ x^2 + 4x ) : 4x - 8 / x^2 + 4x + 8 / 4 - x
a, Rút gọn
b, Tìm giá trị nguyên của x để A có giá trị nguyên dương
giải chi tiết giùm nha
Cho biểu thức A=\(\dfrac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a/ Tìm x để A có nghĩa, từ đó rút gọn A.
b/ Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Lời giải:
a.
\(A=\frac{(x\sqrt{x}-4x)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)
ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-4\neq 0\\ \sqrt{x}-2\neq 0\\ \sqrt{x}-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 16\\ x\neq 4\\ x\neq 1\end{matrix}\right.\)
\(A=\frac{x(\sqrt{x}-4)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{2}-2)(\sqrt{x}-1)}=\frac{(x-1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)
b.
Với $x$ nguyên, để $A\in\mathbb{Z}$ thì $\sqrt{x}+1\vdots 2(\sqrt{x}-2)}$
$\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2$
$\Leftrightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2$
$\Leftrightarrow 3\vdots \sqrt{x}-2$
$\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}$
$\Rightarrow x\in\left\{1;9;25\right\}$
Thử lại thấy đều thỏa mãn.
Cho biểu thức \(A=\dfrac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a)Tìm x để A có nghĩa,từ đó rút gọn A.
b)Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
a: \(A=\dfrac{x\left(\sqrt{x}-4\right)-\left(\sqrt{x}-4\right)}{2x\sqrt{x}-8x-6x+24\sqrt{x}+4\sqrt{x}-16}\)
\(=\dfrac{\left(\sqrt{x}-4\right)\left(x-1\right)}{\left(\sqrt{x}-4\right)\left(2x-6\sqrt{x}+4\right)}=\dfrac{x-1}{2x-6\sqrt{x}+4}\)
\(=\dfrac{x-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{2\sqrt{x}-4}\)
b: Để A nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}-4\in\left\{2;-2;6\right\}\)
hay \(x\in\left\{9;1;25\right\}\)
A=(\(\dfrac{x}{x^2-4}\)+\(\dfrac{2}{2-x}\)+\(\dfrac{1}{x+2}\)):(x-2+\(\dfrac{10-x^2}{x+2}\))
a) rút gọn A
b) tìm giá trị x để A<0
c) tìm các giá trị nguyên của x để A có GT nguyên
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(\Rightarrow A=\left(\dfrac{x-2\left(x+2\right)+1\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(\Rightarrow A=\left(\dfrac{-6}{x^2-4}\right):\left(\dfrac{6}{x+2}\right)\)
\(\Rightarrow A=-\dfrac{6}{x^2-4}.\dfrac{x+2}{6}=-\dfrac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)6}=-\dfrac{1}{x-2}\)
để A<0 thì :
\(\left\{{}\begin{matrix}x-2\ne0\\x-2\notin Z-\end{matrix}\right.\)\(\Leftrightarrow x\in\left\{3;4;5;6;7;8;9;....n\right\}\)
( Z- là tập hợp số nguyên âm )
Để A có giá trị nguyên thì :
\(\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
cho biểu thức A=\(\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{4x}{2-2x^2}\right):\left(x+1\right)\)
a.tìm ĐKXĐ và rút gọn A
b.tìm x nguyên để A có giá trị nguyên
Lời giải:
a) ĐKXĐ: \(\left\{\begin{matrix} x+1\neq 0\\ x-1\neq 0\\ 2-2x^2\neq 0\end{matrix}\right.\Leftrightarrow x\neq \pm 1\)
b)
\(A=\left[\frac{x(x-1)}{(x-1)(x+1)}+\frac{x+1}{(x+1)(x-1)}+\frac{2x}{(x-1)(x+1)}\right].\frac{1}{x+1}=\frac{x^2+2x+1}{(x-1)(x+1)}.\frac{1}{x+1}\)
\(=\frac{(x+1)^2}{(x-1)(x+1)}.\frac{1}{x+1}=\frac{1}{x-1}\)
Để $A$ nguyên thì $1\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1\right\}$
$\Rightarrow x\in\left\{0;2\right\}$ (đều thỏa mãn đkxđ)
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{4x}{2-2x^2}\right):\left(x+1\right)\)
\(=\left(\dfrac{2x\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{2\left(x+1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{4x}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2\left(x^2+2x+1\right)}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{2\left(x+1\right)^2}{2\left(x+1\right)^2\cdot\left(x-1\right)}\)
\(=\dfrac{1}{x-1}\)
b) Để A nguyên thì \(1⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(1\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{2;0\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;0\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{2;0\right\}\)