TL

bài 13 cho M=\(\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x^2+4x}{x^2-4}\)

a,tìm điều kiện xác định của biểu thức M

b,rút gọn M

c, tìm các giá trị nguyên của a để M nhận giá trị nguyên 

NN
23 tháng 12 2022 lúc 12:47

a)

\(ĐKXĐ:\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

b)

\(\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x^2+4x}{x^2-4}\)

\(=\dfrac{1}{x-2}-\dfrac{1}{x+2}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x+4\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x+2}{x-2}\)

c)

\(\dfrac{x+2}{x-2}=\dfrac{x-2+4}{x-2}=\dfrac{x-2}{x-2}+\dfrac{4}{x-2}=1+\dfrac{4}{x-2}\)

vậy M nhận giá trị nguyên thì 4⋮x-2

=> x-2 thuộc ước của 4

\(Ư\left(4\right)\in\left\{-1;1;-2;2;;4;-4\right\}\)

ta có bảng sau

x-2-11-224-4
x1(tm)3(tm)0(tm)4(tm)6(tm-2(loại)

 

Bình luận (0)
NH
23 tháng 12 2022 lúc 12:48

loading...

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
KD
Xem chi tiết
NC
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
MM
Xem chi tiết
CT
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết