Những câu hỏi liên quan
TN
Xem chi tiết
H24
13 tháng 2 2020 lúc 18:16

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
NL
20 tháng 5 2020 lúc 17:00

BĐT chỉ đúng với x;y;z dương

Trước hết ta chứng minh:

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge a^2xy+b^2xy+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Do đó:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) (đpcm)

Bình luận (0)
DA
Xem chi tiết
LM
26 tháng 3 2018 lúc 23:50

Đầu tiên ta sẽ chứng minh \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\left(1\right)\)

\(\Leftrightarrow x^2b\left(a+b\right)+y^2a\left(a+b\right)\ge ab\left(x+y\right)^2\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\left(LĐ\right)\)

Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}\)

Vậy BĐT (1) đã được chứng minh

Với 6 số x,y,z,a,b,c >0 ta sẽ áp dụng BĐT (1) hai lần:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\left(đpcm\right)\)

Bình luận (0)
ND
22 tháng 7 2020 lúc 9:47

Bài làm:

Áp dụng Cauchy Schwars ta có:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Dấu "=" xảy ra khi: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 7 2020 lúc 10:24

Áp dụng BĐT Svac - xơ ta có :

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Dấu ''='' xảy ra <=> \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bình luận (0)
 Khách vãng lai đã xóa
GL
Xem chi tiết
LC
11 tháng 11 2019 lúc 22:37

Áp dụng bất đẳn thức Cauchy-Schwarz ta có: 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)=\)\(\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

          \(\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)=\left(a+b+c\right)\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
11 tháng 11 2019 lúc 22:37

ấy chết em quên ko có mũ 2 

Bình luận (0)
 Khách vãng lai đã xóa
LC
11 tháng 11 2019 lúc 22:41

Áp dụng bất đẳng thức Cauchy-Schwarz ta có: 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\)\(=\left[\frac{a^2}{\left(\sqrt{x}\right)^2}+\frac{b^2}{\left(\sqrt{y}\right)^2}+\frac{c^2}{\left(\sqrt{z}\right)^2}\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NL
29 tháng 10 2019 lúc 14:06

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\frac{\left(a+b+c\right)^2}{\left(x+y+z\right)}.\left(x+y+z\right)=\left(a+b+c\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
ND
10 tháng 9 2018 lúc 19:41

tự ra câu hởi tự trả lời à bạn

Bình luận (0)
DN
10 tháng 9 2018 lúc 19:44

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

Bình luận (0)
CM
Xem chi tiết
NQ
30 tháng 12 2017 lúc 20:57

Đề phải cho x,y,z ; a,b,c >0 chứ bạn ơi

Xét A = (a^2/x + b^2/y + c^2/z) . (x+y+z) = [(a/\(\sqrt{x}\))^2+(b/\(\sqrt{y}\))^2+(c/\(\sqrt{z}\))^2 . (\(\sqrt{x}\)2 + \(\sqrt{y}\)2 + \(\sqrt{z}\)2)

Áp dụng bđt bunhiacopxki ta có : 

A >= (a/\(\sqrt{x}\).\(\sqrt{x}\)+b/\(\sqrt{y}\).\(\sqrt{y}\)+c/\(\sqrt{z}\).\(\sqrt{z}\))^2 = (a+b+c)^2

=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/x+y+z

=> ĐPCM

k mk nha

Bình luận (0)
NQ
30 tháng 12 2017 lúc 21:13

Nhầm chỗ \(\sqrt{z}\)2 nha . đó là \(\sqrt{z}\)2

k mk nha

Bình luận (0)
ZZ
4 tháng 1 2019 lúc 22:22

đây là BĐT Cauchy-Schwarz nha.

Bình luận (0)
VC
Xem chi tiết
LL
8 tháng 10 2017 lúc 16:38

Bài 2 : đã cm bên kia

Bài 1: :| 

we had điều này:

\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)

\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)

Xòng! bunyakovsky

P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<

Bình luận (0)
PH
Xem chi tiết
KT
22 tháng 2 2020 lúc 11:32

\(LHS\ge\left(\sqrt{ax}.\sqrt{\frac{a}{x}}+\sqrt{bx}.\sqrt{\frac{b}{x}}+\sqrt{cx}.\sqrt{\frac{c}{x}}\right)^2=\left(a+b+c\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa