cho A ( 0,-5) B( 1; -3) và C ( x;y) tìm hệ thức liên hệ giữa x và y để b,c thẳng hàng
1. Cho A = (−∞; −1]; B = [1; 5] . Tập hợp A ∪ B là
A. (−∞; 5]
B. [−1; 5]
C. (−∞; −1] ∪ [1; 5]
D. \(\varnothing\)
2. Cho A = (−2; 2]; B = (−∞; 0) . Tập hợp A\B là
A. (−2; 0)
B. [2; +∞)
C. [0; 2]
D. ∅
3. Cho A = [-3; + ∞ ), B =(-2; 1]. Phần bù của B trong A là:
A. (-2; 1]
B. (-∞ ; -2]∪(1 ; +∞)
C. ∅
D. [-3 ; -2]∪(1 ; +∞)
Câu 6:C
Câu 8:C
Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B
Ý D
Câu 6: C
Câu 8: C
Câu 9: D
[1] Cho hai tập A = { 1; 2; 3; 5; 8 } và B = { -1; 0; 1; 5; 9 }. Tìm A ∪ B
A. A ∪ B = { 1; 5} B. { -1; 0; 1; 2; 3; 5; 8; 9 } C. A ∪ B = { -1; 0; 2; 3; 8;9 } D. A ∪ B = { 2; 3; 8 }
Ta có:
Tập hợp A:
\(A=\left\{1;2;3;5;8\right\}\)
Tập hợp B:
\(B=\left\{-1;0;1;5;9\right\}\)
Mà: \(A\cup B\)
\(\Rightarrow A\cup B=\left\{-1;0;1;2;3;5;8;9\right\}\)
⇒ Chọn B
[1] Cho hai tập hợp A = { 1; 5; 9; 13 ;17; 21; 25 } và B = { 0; 1; 3; 5; 10 ; 13 }. Tìm A \(\cap B\)
A. A ∩ B = { 0; 1; 3; 5; 9; 10; 13; 17; 21; 25 } B. A ∩ B = { 1; 5; 13 }
C. A ∩ B = { 9; 17; 21; 25 } D. A ∩ B = { 0; 3; 10}
Ta có:
Tập hợp A:
\(A=\left\{1;5;9;13;17;21;25\right\}\)
Tập hợp B:
\(B=\left\{0;1;3;5;10;13\right\}\)
Mà: \(A\cap B\)
\(\Rightarrow A\cap B=\left\{1;5;13\right\}\)
⇒ Chọn B
Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Tập hợp (A\B) ∩ (B\A) bằng:
A. {5}; B. {0; 1; 5; 6}; C. {1; 2}; D. ∅
A\B={0;1}
B\A={5;6}
(A\B)\(\cap\)(B\A)=\(\varnothing\)
=>Chọn D
A\B = \(\left\{0;1\right\}\)
B\A= \(\left\{5;6\right\}\)
(A\B) \(\cap\) (B\A) = \(\varnothing\)
Cho a,b,c khác 0 thỏa mãn (a+b+c)(1/a+1/b+1/c)=0. Tính P=(a^23+b^23)+(b^5+c^5)+(a^1995+c^1995)
Bài 1 giải các pt sau và diễn tập nghiệm trên trục số a) 2x-6>0 b) -3x+9>0 c)3(x-1)+5>(x+1)+3 d)x/3 - 1/2>x/6 Bài 2:a)cho a>b chứng minh 3a+7>3b+7 b)cho a >b chứng minh a+3>b+1 c) cho 5a -1>5b-1 hãy so sánh a và b Bài 3: 2x(x+5)=0 b) X^2-4=0 d) (x-5)(2x+1)+(x-5)(x+6)=0 Ở bài 1 câu a có dấu hoặc bằng nữa nha bài 2 câu c cũng vậy
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Kết quả của phép toán (A\B) ∪ (B\A) là:
A. {0; 1; 5; 6}; B. {1; 2}; C. {2; 3; 4}; D. {5; 6}.
A \ B = {0,1}
B \ A = {5;6}
(A\B) U (B\A) = {0;1;5;6}
=> A
Cho a,b,c>0 và a+b+c=3. CMR: \(a^5+b^5+c^5+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6\)
1, cho a>0 b>0 thỏa mãn a+b=5.Tòm GTNN của P=\(\frac{1}{a}\)+\(\frac{1}{b}\)
2/cho a>0,b>0,c>0 và a+b+c=1 Tìm GTNN của A=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c>0 thỏa a + b + c = 3
Tìm GTNN của biểu thức C = \(a^5+b^5+c^5+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\)
Mình nghĩ đề bị sai bạn ạ, bạn xem lại giùm mình nhé