Những câu hỏi liên quan
NB
Xem chi tiết
NT
30 tháng 1 2021 lúc 21:14

a) Ta có: AB//CD(AB và CD là hai đáy của hình thang ABCD)

nên AB//MC

Xét ΔAFB và ΔCFM có 

\(\widehat{FAB}=\widehat{FCM}\)(hai góc so le trong, AB//MC)

\(\widehat{AFB}=\widehat{CFM}\)(hai góc đối đỉnh)

Do đó: ΔAFB\(\sim\)ΔCFM(g-g)

nên \(\dfrac{FA}{FC}=\dfrac{FB}{FM}=\dfrac{AB}{CM}\)

mà CM=DM(M là trung điểm của CD)

nên \(\dfrac{BF}{FM}=\dfrac{AB}{DM}\)(1)

Ta có: AB//CD(Hai cạnh đáy của hình thang ABCD)

nên AB//DM

Xét ΔABE và ΔMDE có 

\(\widehat{ABE}=\widehat{MDE}\)(hai góc so le trong, AB//DM)

\(\widehat{AEB}=\widehat{MED}\)(hai góc đối đỉnh)

Do đó: ΔABE\(\sim\)ΔMDE(g-g)

nên \(\dfrac{AB}{DM}=\dfrac{AE}{EM}\)(2)

Từ (1) và (2) suy ra \(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)

Xét ΔAMB có 

E\(\in\)AM(Gt)

F\(\in\)BM(gt)

\(\dfrac{BF}{FM}=\dfrac{AE}{EM}\)(cmt)

Do đó: EF//AB(Định lí Ta lét đảo)

Bình luận (0)
TT
30 tháng 1 2021 lúc 21:14

a/ Có AB // DM

=> t/g ABE đồng dạng t/g MDE (đ/l)

=> AE/ME = AB/MD = AB/MC (1)

Có AB // CM

=> t/g ABF đồng dạng t/g CMF (đ/l)

=> AF/MF = AB/CM (2)(1) ; (2)

=> AE/ME = AF/MF

Xét t/g AMB có AE/ME=AF/MF

=> EF // BC (Thales đảo)

b/ Xét t/g DEM có AB // DM

=> ME/AM = DM/AB (Hệ quả đ.l Thales)

Xét t/g AMB có EF // AB

=> ME/AM = EF/AB (Hệ quả Thales)

Do đó EF = DM = 1/2DC = 6 (cm)P/s: câu b không chắc lắm.

Bình luận (0)
H24
21 tháng 3 2024 lúc 21:13

24

 

THÔNG BÁO

XEM TẤT CẢ

 

Hãy tham gia nhóm Học sinh Hoc24OLM

Nahida ơi bạn nhập bài muốn hỏi vào đây

 

 

Thu Anh

Thu Anh

27 tháng 1 2021 lúc 19:27

Bài 3:Cho hình thang ABCD(AB//CD) có AB = 15 cm, CD = 20 cm . Gọi M là trung điểm của CD , E là giao điểm của AM và BD . a) Chứng minh EM = 2/3 EA . b) Gọi F là giao điểm của AC và BM.Tính EF c) chứng minh AF.AM.MC = AB.AC.ME Mn giúp mk vs ạ :((

Lớp 8

Toán

NHỮNG CÂU HỎI LIÊN QUAN

Ngân Lê Bảo

Ngân Lê Bảo

30 tháng 1 2021 lúc 21:00

Cho hình thang ABCD, AB song song với CD có AB=7,5 cm, CD=12 cm. Gọi M là trung điểm của CD, E là giao điểm AM và BD, F là giao điểm BM và AC. Chứng minh rằng:

 

a, EF song song với AB

 

b, Tính EF

 

Xem chi tiết

 Theo dõi

 Báo cáo

 

Lớp 8

Toán

2

0

Viết câu trả lời giúp Ngân Lê Bảo

Nahida

 

Nguyễn Lê Phước Thịnh

Nguyễn Lê Phước Thịnh CTV

 

30 tháng 1 2021 lúc 21:14

 

a) Ta có: AB//CD(AB và CD là hai đáy của hình thang ABCD)

 

nên AB//MC

 

Xét ΔAFB và ΔCFM có 

 

ˆ

F

A

B

=

ˆ

F

C

M

(hai góc so le trong, AB//MC)

 

ˆ

A

F

B

=

ˆ

C

F

M

(hai góc đối đỉnh)

 

Do đó: ΔAFB

ΔCFM(g-g)

 

nên 

F

A

F

C

=

F

B

F

M

=

A

B

C

M

 

mà CM=DM(M là trung điểm của CD)

 

nên 

B

F

F

M

=

A

B

D

M

(1)

 

Ta có: AB//CD(Hai cạnh đáy của hình thang ABCD)

 

nên AB//DM

 

Xét ΔABE và ΔMDE có 

 

ˆ

A

B

E

=

ˆ

M

D

E

(hai góc so le trong, AB//DM)

 

ˆ

A

E

B

=

ˆ

M

E

D

(hai góc đối đỉnh)

 

Do đó: ΔABE

ΔMDE(g-g)

 

nên 

A

B

D

M

=

A

E

E

M

(2)

 

Từ (1) và (2) suy ra 

B

F

F

M

=

A

E

E

M

 

Xét ΔAMB có 

 

E

AM(Gt)

 

F

BM(gt)

 

B

F

F

M

=

A

E

E

M

(cmt)

 

Do đó: EF//AB(Định lí Ta lét đ

Bình luận (0)
LL
Xem chi tiết
H9
4 tháng 8 2023 lúc 13:17

a) Ta có:

\(\widehat{ABC}=\widehat{BCD}\) (gt) 

Nên hai góc này so le trong

⇒ AB//CD

b) Ta có:

\(\widehat{DCE}=\widehat{CEF}=90^o\) (gt)

⇒ EF//CD

Mà: AB//CD

⇒ AB//EF

Bình luận (0)
KS
4 tháng 8 2023 lúc 13:18

có :

`góc ABC = góc BCD`

Mà 2 góc này ở vị trí solo trong

`=>AB` // `CD`

 có :

\(DC\perp CE\)

\(EF\perp CE\) `=> DC` // `EF`

 lại có :AB//CD

           CD//EF = > AB//EF

Bình luận (0)
H24
Xem chi tiết
H24
20 tháng 9 2019 lúc 8:56

A B C D E F P

*Chứng minh EF // AB // CD

Gọi P là trung điểm AD có ngay:PF // AB (2) (PF là đường trung bình tam giác DAB)

Lại có PE // DC(là đường trung bình tam giác ADC) và DC // AB nên PE // AB(2)

Từ (1) và (2) theo tiên đề Ơclit suy ra P, E, F thẳng hàng. Mà PF // AB -> FE // AB(3)

Lại có PE // DC -> FE // DC (4). Từ (3) và (4)  suy ra đpcm.

* Chứng minh EF = \(\frac{CD-AB}{2}=\frac{CD}{2}-\frac{AB}{2}\)

Do PE = 1/2 CD; PF = 1/2 AB và P, E, F thẳng hàng nên:

\(PF+FE=PE\Leftrightarrow\frac{1}{2}AB+FE=\frac{1}{2}CD\Leftrightarrow FE=\frac{CD-AB}{2}\)

=> đpcm

P/s: ko chắc.

Bình luận (0)
H24
20 tháng 9 2019 lúc 18:24

Sửa tí: 

"Có ngay PF // AB (1)"

Bình luận (0)
NA
Xem chi tiết
NH
Xem chi tiết
NA
Xem chi tiết
NM
2 tháng 8 2021 lúc 16:59

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Và EI=CD/2

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

Và IF=AB/2

 

b) Trong ∆ EIF ta có: EF ≤ EI + IF (dấu “=” xảy ra khi E, I, F thẳng hàng)

Mà EI=\(\dfrac{CD}{2}\); IF=\(\dfrac{AB}{2}\) (chứng minh trên) ⇒EF≤\(\dfrac{CD}{2}+\dfrac{AB}{2}\)

Vậy EF≤\(\dfrac{AB+CD}{2}\) (dấu bằng xảy ra khi AB // CD)

Tick nha 😘

Bình luận (0)
NT
2 tháng 8 2021 lúc 20:53

a) Xét ΔACD có 

I là trung điểm của AC

E là trung điểm của AD

Do đó: EI là đường trung bình của ΔACD

Suy ra: EI//CD

Xét ΔABC có 

I là trung điểm của AC

F là trung điểm của BC

Do đó: IF là đường trung bình của ΔABC

Suy ra: IF//AB

Bình luận (0)
JN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NT
16 tháng 9 2021 lúc 21:14

a: Xét ΔACD có 

E là trung điểm của AD

I là trung điểm của AC

Do đó: EI là đường trung bình của ΔACD

Suy ra: EI//CD

Xét ΔACB có 

F là trung điểm của BC

I là trung điểm của AC

Do đó: FI là đường trung bình của ΔACB

Suy ra: FI//AB

Bình luận (0)
H24
Xem chi tiết