NA

Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC. 

Chứng minh rằng:

a)  EI//CD, IF//AB.

b)EF=<AB+CD/2

NM
2 tháng 8 2021 lúc 16:59

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Và EI=CD/2

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

Và IF=AB/2

 

b) Trong ∆ EIF ta có: EF ≤ EI + IF (dấu “=” xảy ra khi E, I, F thẳng hàng)

Mà EI=\(\dfrac{CD}{2}\); IF=\(\dfrac{AB}{2}\) (chứng minh trên) ⇒EF≤\(\dfrac{CD}{2}+\dfrac{AB}{2}\)

Vậy EF≤\(\dfrac{AB+CD}{2}\) (dấu bằng xảy ra khi AB // CD)

Tick nha 😘

Bình luận (0)
NT
2 tháng 8 2021 lúc 20:53

a) Xét ΔACD có 

I là trung điểm của AC

E là trung điểm của AD

Do đó: EI là đường trung bình của ΔACD

Suy ra: EI//CD

Xét ΔABC có 

I là trung điểm của AC

F là trung điểm của BC

Do đó: IF là đường trung bình của ΔABC

Suy ra: IF//AB

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
TP
Xem chi tiết
NL
Xem chi tiết
PB
Xem chi tiết
JN
Xem chi tiết
TP
Xem chi tiết
TN
Xem chi tiết
CM
Xem chi tiết
NG
Xem chi tiết