Những câu hỏi liên quan
TA
Xem chi tiết
AH
1 tháng 4 2021 lúc 1:55

Lời giải:

$x+y-2=0\Rightarrow x+y=2$

a) 

$B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x(x+y)+2x+3$

$=x^3(x+y)+x^3y-2x^3+x^2y^2-2x^2y-2x+2x+3$

$=2x^3+x^3y-2x^3+x^2y^2-2x^2y+3$

$=x^3y+x^2y^2-2x^2y+3$

$=xy(x^2+xy-2x)+3=xy[x(x+y)-2x]+3=xy(2x-2x)+3=3$

b) 

$C=x^3+x^2y-2x^2-xy+y^2-3y-x+5$

$=x^2(x+y)-2x^2-xy+y^2-3(y+x)+2x+5$

$=2x^2-2x^2-xy+y^2-6+2x+5$

$=-xy+y^2+2x-1$

$=y(x+y)+2x-1-2xy=2y+2x-1-2x=2(x+y)-1-2x=3-2x$ (không tính cụ thể được giá trị- bạn xem lại đề)

c) 

$D=2x^4+3x^2y^2+y^4+y^2$

$=(x^4+2x^2y^2+y^4)+x^4+x^2y^2+y^2

$=(x^2+y^2)^2+x^4+x^2y^2+y^2$

$=1+x^2(x^2+y^2)+y^2=1+x^2+y^2=1+1=2$

Bình luận (0)
H24
Xem chi tiết
KS
29 tháng 5 2022 lúc 16:59

\(B=\left(x^2+1\right)\left(y^2+1\right)-\left(x-4\right)\left(x+4\right)-\left(y-5\right)\left(y+5\right)\\ B=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\\ B=x^2y^2+41\ge41\)

Dấu "=" xảy ra khi \(x^2y^2\Leftrightarrow x=y=0\)

Vậy \(MaxB=41\Leftrightarrow x=y=0\)

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\\ A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\\ A=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi

\(\left(x^2+5x\right)^2=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(MaxA=-36\Leftrightarrow x\in\left\{0;-5\right\}\)

Bình luận (0)
HH
Xem chi tiết
LL
31 tháng 8 2021 lúc 13:39

a )\(2x\left(xy-3\right)+3xy\left(x+1-y\right)+3x\left(y^2-1\right)=2x^2y-6x+3x^2y+3xy-3xy^2+3xy^2-3x=5x^2y-9x+3xy\)

=> Phụ thuộc vào giá trị của biến

b) \(\left(x+2y\right)\left(x-2y\right)-x\left(x+4y^2\right)+5=x^2-4y^2-x^2-4xy^2+5=-4y^2-4xy^2+5\)

=> Phụ thuộc vào giá trị của biến

c) \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)=27x^3+8-9x^2+4=27x^3-9x^2+12\)

=> Phụ thuộc vào giá trị của biến

Bình luận (0)
NT
31 tháng 8 2021 lúc 13:41

a: Ta có: \(2x\left(xy-3\right)+3xy\left(x-y+1\right)+3x\left(y^2-1\right)\)

\(=2x^2y-6x+3x^2y-3xy^2+3xy+3xy^2-3x\)

\(=5x^2y+3xy-9x\)

c: Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)\)

\(=27x^3+8-9x^2+4\)

\(=27x^3-9x^2+12\)

Bình luận (0)
NH
Xem chi tiết
AH
29 tháng 7 2021 lúc 19:25

Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:

$3x+5(x+1)=13$
$8x+5=13$

$8x=8$

$x=1$

$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:

$2(y+5)-3y=4$

$-y+10=4$

$-y=-6$

$y=6$

$x=6+5=11$

c. Thay $y=x-2$ vô điều kiện đầu thì:

$-x+5(x-2)=-6$

$4x-10=-6$

$4x=10+(-6)=4$

$x=1$

$y=x-2=1-2=-1$

Bình luận (0)
NT
29 tháng 7 2021 lúc 23:08

a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)

Bình luận (0)
LN
Xem chi tiết
LL
Xem chi tiết
KL
19 tháng 10 2023 lúc 21:53

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

Bình luận (0)
DN
Xem chi tiết
AH
30 tháng 3 2022 lúc 23:56

Lời giải:
a. PTTT của ĐTHS tại điểm $(x_0,y_0)$ là:

$y=y'(x_0)(x-x_0)+y_0$
$=(-x_0^2-4x_0-3)(x-x_0)+y_0$
Hệ số góc max $\Leftrightarrow -x_0^2-4x_0-3$ max 

Mà:
$-x_0^2-4x_0-3=1-(x_0+2)^2\leq 1$ nên $-x_0^2-4x_0-3$ max bằng $1$ khi $x_0=-2$
Vậy PTTT cần tìm là:
$y=y'(-2)(x+2)+y(-2)=1(x+2)+\frac{5}{3}=x+\frac{11}{3}$

b.

Hệ số góc nhỏ nhất đâu đồng nghĩa với $y''(x_0)=0$ đâu bạn?)

Để pttt tại $x=x_0$ có hệ số góc min thì nghĩa là $f'(x_0)=-x_0^2-4x_0-3$ min 

Mà $f'(x_0)$ không tồn tại min trên $\mathbb{R}$ nên không có pttt thỏa mãn.

Bình luận (0)
QR
Xem chi tiết
HP
15 tháng 6 2016 lúc 9:56

\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)

\(=4x^2-2y-5x^2+x^2-4y=-6y\)

\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)

\(=8\)

Vậy BT B ko phụ thuộc vào biến

câu sau tương tự

\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)

\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)

\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)

\(\Rightarrow3x^2+14x-2=0\)

\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)

\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)

Bình luận (0)
HP
15 tháng 6 2016 lúc 9:57

câu sau tự lm nhé,mk ko lm nữa đâu

Bình luận (0)
HP
15 tháng 6 2016 lúc 9:58

câu sau nhân phân phối ra thôi,đc \(-5x+16=0\Rightarrow x=\frac{16}{5}\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 7 2021 lúc 21:01

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bình luận (0)
NT
15 tháng 7 2021 lúc 21:02

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

Bình luận (0)
HT
Xem chi tiết
PH
14 tháng 10 2018 lúc 14:32

\(A=x^3+3xy^2-9+y\left(3x^2+y^2\right)\)

\(=x^3+3x^2y+3xy^2+y^3-9\)

\(=\left(x+y\right)^3-9\)

\(=\left(1,95+0,05\right)^3-9=2^3-9=-1\)

\(B=x^2+\frac{1}{2}x+\frac{1}{16}\)

\(=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)

\(=\left(x+\frac{1}{4}\right)^2\)

\(=\left(9,75+0,25\right)^2=10^2=100\)

Bình luận (0)