cho biểu thức: với x lớn hơn hoặc bằng 0, x khác 1
a) Rút gọn biểu thức
Rút gọn biểu thức chứa chữ A = (1/√x -1 + 1/√x +1 ) : 1/√x -1 với x lớn hơn hoặc bằng 0 , x khác 1 B = 2√x /√x -5 - x -25√x / 25 -x với lớn hơn hoặc bằng 0 , x khác 25
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Rút gọn biểu thức sau: a) 1-x√x /1-√x + √x ( x lớn hơn hoặc bằng 0 , x khác 1)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
\(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}=\dfrac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\)
\(=\dfrac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}=\dfrac{1-x}{1-\sqrt{x}}-\dfrac{x\sqrt{x}-\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}-\dfrac{\sqrt{x}\left(x-1\right)}{1-\sqrt{x}}\)
\(=1+\sqrt{x}+\sqrt{x}\left(1+\sqrt{x}\right)\)
\(=1+\sqrt{x}+\sqrt{x}+x=x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
Rút gọn biểu thức P= 1/√x-1 + 1/√x+1 + 1 với x lớn hơn hoặc bằng 0, x khác 1
Giúp mình với
ĐKXĐ: x≥0,x≠1.Ở đây mình làm ngắn gọn nhé, bạn chỉ cần ghi đề bài dưới đkxđ là được.
P=(√x+1+√x-1+x+1)/(√x-1)(√x+1)
= (x+2√x+1)/(√x+1)(√x-1)
= (√x+1)^2/(√x+1)(√x-1)
= (√x+1)/(√x-1)
Vậy P=(√x+1)/(√x-1) với x ≥ 0,x≠1
Giúp mình với ạ Rút gọn biểu thức: P=1/2+căn x + 2/2- căn x - 4 căn x/ 4x (a lớn hơn hoặc bằng 0; x khác 4)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
rút gọn biểu thức với lớn hơn hoặc bằng 0: A=\(\left(1-\frac{1}{\sqrt{x+1}}\right)\left(x+\sqrt{x}\right)\)
P=\(\left(\frac{3}{x-\sqrt{x-2}}+\frac{1}{\sqrt{x+1}}\right)\left(\sqrt{x-2}\right)\) với x lớn hơn hoặc bằng 0 và x khác 4
cho A=cănx/căn(x+3)+2cănx/căn(x-3)-3x+9/x-9,với x lớn hơn bằng 0,x khác 9
a rút gọn biểu thức A
b tìm x để a=1/3
c tìm giá trị lớn nhất của A
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
`a)A=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx-3)-(3x+9)/(x-9)(x>=0,x ne 9)`
`=(sqrtx(sqrtx-3)+2sqrtx(sqrtx+3)-3x-9)/(x-9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`b)A=1/3`
`<=>3/(sqrtx+3)=1/3`
`<=>sqrtx+3=9`
`<=>sqrtx=6`
`<=>x=36(tm)`
`c)A=3/(sqrtx+3)`
`sqrtx+3>=3>0`
`=>A<=3/3=1`
Dấu "=" xảy ra khi `x=0`
Cho hàm số: y= f(x) = -2x+5 (1)
a)Vẽ đô thị hàm số (1) trên mặt phẳng tọa độ
b)Tìm tọa độ giao điểm I của hai hàm số y= -2x+5 và y= x-1 bằng phương pháp tính
Rút gọn biểu thức :
M = \(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
( Với a lớn hơn hoặc bằng 0 ; a khác 1 )
\(M=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)=a-1\)
Rút gọn biểu thức: G= GTTD 2 +x - (x +1) với x lớn hơn hoặc bằng -2
Cho biểu thức Q = \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\left(x+\sqrt{x}\right)\) (x lớn hơn hoặc bằng 0, x khác 1)
a, Rút gọn Q
b, Tìm các giá trị nguyên của x để Q nhận giá trị nguyên.
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(x+\sqrt{x}\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(x+\sqrt{x}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\cdot\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{x-1}=\dfrac{2x}{x-1}\)
b: Để Q là số nguyên thì \(2x⋮x-1\)
=>\(2x-2+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;2;3\right\}\)
cho biểu thức m = x bình phương trừ căn x trên x cộng căn x cộng 1 trừ x bình cộng căn x trên x trừ căn x cộng 1 cộng x cộng 1. Rút gọn biều thức m với x lớn hơn hoặc bằng 0