CMR :
\(n^2+n+2\)không chia hết cho 15 vs mọi \(n\in N\)
Giúp e vs ạ😭😭😭
1. CMR: 1^2+3^2+5^2+...+(2n-1)^2= (n*(4n^2-1))/3 (vs mọi n thuộc Z+)
2. CMR: 4^n+15*n-1 chia hết cho 9 (vs mọi n thuộc Z+)
3. CMR: n^3+11*n chia hết cho 6 (vs mọi n thuộc Z+)
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
CMR: B(n) = n^2 +n +2 không chia hết cho 15 với mọi số tự nhiên n
Xet \(n=3k\)
\(\left(3k\right)^2+3k+2\equiv2\left(mod3\right)\)
Xet \(n=3k+1\)
\(\left(3k+1\right)^2+3k+1+2\equiv4\equiv1\left(mod3\right)\)
Xet \(n=3k+2\)
\(\left(3k+2\right)^2+3k+2+2\equiv1+2+2\equiv2\left(mod3\right)\)
\(\Rightarrow n^2+n+2⋮̸3\)
\(\Rightarrow n^2+n+2⋮̸15\)
CMR với mọi n thuộc N thì
a,9^n+1 không chia hết cho 100
b, n^2+n+1 không chia hết cho 15
a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)
=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)
b, Gỉa sử n chia hết cho 3
=> n2+n+1 chia 3 dư 1.
Nếu n chia 3 dư 1
=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3
Nếu n chia 3 dư 2
=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.
Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5
=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9
=> n2 + n+1 ko chia hết cho 15.
thấy sai thì góp ý nha
CMR : n2 + n + 1 không chia hết cho 15 với mọi n ( n thuộc N )
Bài 1 :
a, 15^n + 15^n+2 chia hết cho 113 với mọi số tự nhiên n
b, n^4 - n^2 chia hết cho 4 với mọi số tự nhiên n
c, 50^n+2 - 50^n+1 chia hết cho 245 với mọi số tự nhiên n
d, n^3 - n chia hết cho 6 vs mọi số nguyên n
b) Ta có: \(n^4-n^2=n^2\left(n^2-1\right)=n\cdot n\cdot\left(n-1\right)\cdot\left(n+1\right)\)
*Trường hợp 1: n chia 2 dư 1
\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮2\\n+1⋮2\end{matrix}\right.\)
\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)
hay \(n^4-n^2⋮4\)(1)
*Trường hợp 2: n chia hết cho 2
\(\Leftrightarrow n^2⋮4\)
\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)
hay \(n^4-n^2⋮4\)(2)
Từ (1) và (2) suy ra \(n^4-n^2⋮4\forall n\in N\)(đpcm)
d) Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ta có: n và n-1 là hai số tự nhiên liên tiếp
\(\Leftrightarrow n\cdot\left(n-1\right)⋮2\)
\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮2\)
\(\Leftrightarrow n^3-n⋮2\)(3)
Ta có: n, n-1 và n+1 là ba số tự nhiên liên tiếp
\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮3\)
\(\Leftrightarrow n^3-n⋮3\)(4)
Từ (3), (4) và ƯCLN(3,2)=1 suy ra \(n^3-n⋮3\cdot2\)
hay \(n^3-n⋮6\forall n\in N\)
a) Ta có: \(15^n+15^{n+2}=15^n+15^n\cdot225\)
\(=15^n\cdot\left(1+225\right)=15^n\cdot226=2\cdot15^n\cdot113⋮113\forall n\in N\)
c) Ta có: \(50^{n+2}-50^{n+1}\)
\(=50^n\cdot2500-50^n\cdot50\)
\(=50^n\cdot\left(2500-50\right)=50^n\cdot2450\)
\(=10\cdot50^n\cdot245⋮245\forall n\in N\)(đpcm)
1.CMR: 55^n+1 - 55^n chia hết cho 54(vs n là STN)
2.CMR:n^2(n+1)+2n(n+1) luôn chia hết cho 6 vs mọi số nguyên n.
Help me!
1) \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)
2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3
=> A\(⋮\)2.3
A\(⋮\)6
CMR : \(n^2+n+2\)không chia hết cho 15 \(\forall n\in N\)
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N
Ta có: n2+n+2=n(n+1)+2
Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.
Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.
Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).
Vậy số trên không chia hết cho 15.
CMR: 5^n+3-5^n+2 chia hết cho 100 vs mọi n thuộc N
\(5^{n+3}-5^{n+2}=5^{n+2}\left(5-1\right)=5^{n+2}.4=5^2.5^n.4=25.5^n.4=100.5^n\) chia hết cho 100 (đpcm)
\(5^{n+3}-5^{n+2}=5^{n+2}\left(5-1\right)=5^{n+2}.4=5^n.25.4=5^n.100\)
Ta thấy :\(5^n.100⋮100\)
\(\RightarrowĐPCM\)