Giải giúp mình câu này với
Giải giúp mình câu này với
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, ta luôn có: \(sin^{2n}\alpha+cos^{2n}\alpha\le1\)
Chứng minh bằng phương pháp quy nạp toán học: \(\forall n\in N\)*, n>1; ta có: \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+...+\dfrac{1}{2n}>\dfrac{13}{24}\)
dùng quy nạp chứng minh 3 mũ n lớn hơn hoặc bằng 2n+1
1) hinh chu nhat co 2 duong..bang nhau la hinh vuong
A. Cheo B. Trung binh C. Canh doi D. Canh ben
1) Hinh thoi ABCD co duong cheo AB < CD co may truc doi xung
A. 1 B. 2 C.3 D. 4
1) Thuc hien phep tinh cong 2 phan thuc \(\dfrac{2x}{x^2-2x+1}+\dfrac{x+1}{x-1}\) duoc ket qua la:
A. \(\dfrac{x^2+2x+1}{\left(x-1\right)^2}\) B. \(\dfrac{x^2+2x-1}{\left(x-1\right)^2}\) C. \(\dfrac{x^2-x-1}{\left(x-1\right)^2}\) D. \(\dfrac{x^2-2x-1}{\left(x-1\right)^2}\)
1) Ket qua quy dong mau thuc cua 2 phan thuc \(\dfrac{1}{x-1}\) va \(\dfrac{2}{x+1}\) la:
\(\dfrac{1}{x-1}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)};\dfrac{2}{x+1}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
1) Ket qua khi rut gon phan thuc \(\dfrac{x^2+2x+1}{x^3+1}\) la:
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{x^2-x+1}\)
1) Dieu kien cua x de phan thuc \(\dfrac{2x^3y^5}{5\left(x-2\right)^2}\) co nghia la
A. x ≠ 2 B. x ≠ -2
C. x = -2 D. x = 2
\(ĐK:5\left(x-2\right)^2\ne0\Leftrightarrow x-2\ne0\Leftrightarrow x\ne2\)