Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

TH

Bài 1 :
a, 15^n + 15^n+2 chia hết cho 113 với mọi số tự nhiên n
b, n^4 - n^2 chia hết cho 4 với mọi số tự nhiên n
c, 50^n+2 - 50^n+1 chia hết cho 245 với mọi số tự nhiên n
d, n^3 - n chia hết cho 6 vs mọi số nguyên n

NT
29 tháng 7 2020 lúc 20:05

b) Ta có: \(n^4-n^2=n^2\left(n^2-1\right)=n\cdot n\cdot\left(n-1\right)\cdot\left(n+1\right)\)

*Trường hợp 1: n chia 2 dư 1

\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮2\\n+1⋮2\end{matrix}\right.\)

\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)

hay \(n^4-n^2⋮4\)(1)

*Trường hợp 2: n chia hết cho 2

\(\Leftrightarrow n^2⋮4\)

\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)

hay \(n^4-n^2⋮4\)(2)

Từ (1) và (2) suy ra \(n^4-n^2⋮4\forall n\in N\)(đpcm)

d) Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Ta có: n và n-1 là hai số tự nhiên liên tiếp

\(\Leftrightarrow n\cdot\left(n-1\right)⋮2\)

\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮2\)

\(\Leftrightarrow n^3-n⋮2\)(3)

Ta có: n, n-1 và n+1 là ba số tự nhiên liên tiếp

\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮3\)

\(\Leftrightarrow n^3-n⋮3\)(4)

Từ (3), (4) và ƯCLN(3,2)=1 suy ra \(n^3-n⋮3\cdot2\)

hay \(n^3-n⋮6\forall n\in N\)

a) Ta có: \(15^n+15^{n+2}=15^n+15^n\cdot225\)

\(=15^n\cdot\left(1+225\right)=15^n\cdot226=2\cdot15^n\cdot113⋮113\forall n\in N\)

c) Ta có: \(50^{n+2}-50^{n+1}\)

\(=50^n\cdot2500-50^n\cdot50\)

\(=50^n\cdot\left(2500-50\right)=50^n\cdot2450\)

\(=10\cdot50^n\cdot245⋮245\forall n\in N\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NN
Xem chi tiết
BN
Xem chi tiết
HB
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
TU
Xem chi tiết
EE
Xem chi tiết
LN
Xem chi tiết