Những câu hỏi liên quan
AK
Xem chi tiết
H24
23 tháng 8 2023 lúc 9:53

Để tính (x+y)2023, ta sẽ sử dụng công thức nhân đa thức. Trước tiên, ta mở đuôi công thức:(x+y)2023 = (x+y)(x+y)(x+y)...(x+y)Từ phép nhân đầu tiên, ta có:(x+y)(x+y) = x^2 + 2xy + y^2Tiếp tục nhân với (x+y), ta có:(x^2 + 2xy + y^2)(x+y) = x^3 + 3x^2y + 3xy^2 + y^3Lặp lại quá trình này 2020 lần nữa, ta có:(x^3 + 3x^2y + 3xy^2 + y^3)(x+y) = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4Tiếp tục nhân với (x+y), ta có:(x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4)(x+y) = x^5 + 5x^4y + 10x^3

Bình luận (2)
DB
23 tháng 8 2023 lúc 10:00

Bình luận (2)
H24
23 tháng 8 2023 lúc 10:02

Để tính (x+y)2023, ta sẽ sử dụng công thức nhân đa thức. 

 

Trước tiên, ta mở đuôi công thức:

 

(x+y)2023 = (x+y)(x+y)(x+y)...(x+y)

 

Từ phép nhân đầu tiên, ta có:

 

(x+y)(x+y) = x^2 + 2xy + y^2

 

Tiếp tục nhân với (x+y), ta có:

 

(x^2 + 2xy + y^2)(x+y) = x^3 + 3x^2y + 3xy^2 + y^3

 

Lặp lại quá trình này 2020 lần nữa, ta có:

 

(x^3 + 3x^2y + 3xy^2 + y^3)(x+y) = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4

 

Tiếp tục nhân với (x+y), ta có:

 

(x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4)(x+y) = x^5 + 5x^4y + 10x^3

Bình luận (0)
AK
Xem chi tiết
DQ
Xem chi tiết
NT
12 tháng 7 2023 lúc 19:41

\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0

Bình luận (0)
NP
Xem chi tiết
AH
6 tháng 1 2024 lúc 17:58

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

Bình luận (0)
H24
Xem chi tiết
K2
Xem chi tiết
HG
Xem chi tiết
NT
25 tháng 12 2023 lúc 12:26

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

Bình luận (0)
YH
Xem chi tiết
AH
30 tháng 9 2023 lúc 9:56

Lời giải:

$|1-\sqrt{23}|+23-\sqrt{23}-|-2023|^0=\sqrt{23}-1+23-\sqrt{23}-1$

$=23-2=21$

Bình luận (0)
AK
Xem chi tiết
AK
23 tháng 6 2023 lúc 10:09

Help me plsssssssssss

Bình luận (0)
PA
23 tháng 6 2023 lúc 10:13

Ta có: `a^2+2023=a^2+ab+bc+ca=a(a+b)+c(a+b)=(a+b)(c+a)`

Do vai trò ba biến `a,b,c` như nhau nên ta có: `b^2+2023=(b+c)(a+b);c^2+2023=(c+a)(b+c)`

`=>A=\sqrt(((a+b)(b+c)(c+a))^2)=|(a+b)(b+c)(c+a)|\inQQ`

Bình luận (1)
DB
23 tháng 6 2023 lúc 10:17

Ta có: a2+2023 = a2+ab+bc+ca
                         = a(a+b) + c(b+a)
                         = (a+b)(a+c)
CM tương tự ta đc: b2+2023= (b+c)(b+a)
                                c2+2023 = (c+a)(c+b)

 Ta được: A= \(\sqrt{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)                A= \(\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)
                A= \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\)
Vì a,b,c là các số hữu tỉ (đb) nên (a+b)(a+c)(b+c) là các số hữu tỉ (đpcm)
 

Bình luận (1)
TP
Xem chi tiết
H24
2 tháng 12 2023 lúc 21:23

Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)

Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\) 

\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(=2\sqrt{5}+3-2\sqrt{5}\)

\(=3\)

\(\Rightarrow a=b+3\)

Thay \(a=b+3\) vào (1), ta được:

\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)

\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)

\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)

\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)

\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)

\(=2060\)

$\Rightarrow$ Chọn đáp án $C$.

Bình luận (0)
ND
2 tháng 12 2023 lúc 21:28

Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)

\(\Rightarrow a-b=3\)

Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)

\(=a^3+a^2-b^3+b^2-11ab+2024\)

\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)

\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)

\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)

\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)

\(=3^3+3^2+2024\)

\(=2060\)

\(\Rightarrow C\)

Bình luận (0)