TA
1. Trong mặt phẳng Oxy, cho Mleft(1;2right), Ileft(3;-1right), k2. Hỏi điểm nào trong các điểm sau đây là ảnh của điểm M qua phép vị tự tâm I, tỉ số k?A. left(4;1right)B. left(4;-2right)C. left(-1;5right)D. left(1;1right)2. Trong mặt phẳng Oxy , cho Mleft(2;3right), Mleft(3;4right), Ileft(x_o;y_oright), k2. Phép vị tự tâm I, tỉ số k biến điểm M thành điểm M. Tính Px_o+y_oA. P5B. P3C. P6D. P43. Trong mặt phẳng Oxy , cho d:2x+y-40, Ileft(-1;2right), k-2. Hỏi đường thẳng nào trong các đường thẳng s...
Đọc tiếp

Những câu hỏi liên quan
XH
Xem chi tiết
TT
Xem chi tiết
NT
20 tháng 1 2023 lúc 0:32

(1); vecto u=2*vecto a-vecto b

=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)

(2): vecto u=-2*vecto a+vecto b

=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)

(3): vecto a=2*vecto u-5*vecto v

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)

(4): vecto OM=(x;y)

2 vecto OA-5 vecto OB=(-18;37)

=>x=-18; y=37

=>x+y=19

Bình luận (0)
NT
Xem chi tiết
TD
Xem chi tiết
BB
Xem chi tiết
NT
16 tháng 5 2022 lúc 21:33

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Bình luận (0)
H24
16 tháng 5 2022 lúc 21:35

tham khảo

Thay y=1 vào (P), ta được:

\(x^2=1\)

=>x=1 hoặc x=-1

Thay x=1 và y=1 vào (d), ta được:

\(m^2-1+3=1\)(vô lý)

Thay x=-1 và y=1 vào (d), ta được:

\(m^2-1-3=1\)

\(\Leftrightarrow m^2=5\)

hay \(m\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

Bình luận (0)
H24
Xem chi tiết
NT

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=2x-m+1\)

=>\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)

\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-2m+6>0

=>-2m>-6

=>m<3

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)

\(x_1x_2\left(y_1+y_2\right)+48=0\)

=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)

=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)

=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)

=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)

=>\(\left(m-1\right)\left(-m+5\right)+12=0\)

=>\(-m^2+5m+m-5+12=0\)

=>\(-m^2+6m+7=0\)

=>\(m^2-6m-7=0\)

=>(m-7)(m+1)=0

=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AH
28 tháng 4 2022 lúc 0:30

Lời giải:

Đường thẳng $(d_1)$ có VTPT $(2,-4)$

$\Rightarrow$ VTCP của $(d_1)$: $(4,2)$

VTCP của $(d_2)$: $(m, -m-1)$

Để $(d_1), (d_2)$ vuông góc với nhau khi chỉ khi 2 VTCP của 2 đường thẳng vuông góc với nhau 

$\Leftrightarrow 4m+2(-m-1)=0$

$\Leftrightarrow m=1$

 

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 12:17

a) Ta có: \(\left( C \right):{x^2} + {y^2} = 1 \Leftrightarrow y =  \pm \sqrt {1 - {x^2}} \).

Độ dài \(OM\) chính là giá trị tuyệt đối của hoành độ của điểm \(M\). Vậy \(OM = \left| x \right|\).

Độ dài \(MN\) chính là giá trị tuyệt đối của tung độ của điểm \(N\). Vậy \(MN = \left| {\sqrt {1 - {x^2}} } \right| = \sqrt {1 - {x^2}} \).

\(S\left( x \right) = {S_{ONP}} = \frac{1}{2}.NP.OM = MN.OM = \sqrt {1 - {x^2}} .\left| x \right|\).

b) Xét hàm số  \(S\left( x \right) = \sqrt {1 - {x^2}} .\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x\sqrt {1 - {x^2}} }&{khi\,\,0 \le x \le 1}\\{ - x\sqrt {1 - {x^2}} }&{khi\,\, - 1 \le x < 0}\end{array}} \right.\).

ĐKXĐ: \(1 - {x^2} \ge 0 \Leftrightarrow  - 1 \le x \le 1\)

Hàm số \(S\left( x \right)\) có tập xác định là \(\left[ { - 1;1} \right]\).

Vậy hàm số \(S\left( x \right)\) xác định trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\) nên liên tục trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\).

Ta có: \(S\left( 0 \right) = 0.\sqrt {1 - {0^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {x\sqrt {1 - {x^2}} } \right) = 0.\sqrt {1 - {0^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to {0^ - }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\sqrt {1 - {x^2}} } \right) =  - 0.\sqrt {1 - {0^2}}  = 0\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} S\left( x \right) = 0\) nên \(\mathop {\lim }\limits_{x \to 0} S\left( x \right) = 0 = S\left( 0 \right)\)

Vậy hàm số \(S\left( x \right)\) liên tục tại điểm \({x_0} = 0\). Vậy hàm số \(S\left( x \right)\) liên tục trên \(\left( { - 1;1} \right)\).

c) \(\mathop {\lim }\limits_{x \to {1^ - }} S\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x\sqrt {1 - {x^2}} } \right) = 1.\sqrt {1 - {1^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to  - {1^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( { - x\sqrt {1 - {x^2}} } \right) =  - 1.\sqrt {1 - {{\left( { - 1} \right)}^2}}  = 0\)

Bình luận (0)