Những câu hỏi liên quan
PH
Xem chi tiết
KK
5 tháng 9 2021 lúc 7:18

a. (x - 22) - 1 = 0

<=> x - 4 - 1 = 0

<=> x = 5

b. 4 - (x - 2)2 = 0

<=> 22 - (x - 2)2 = 0

<=> (2 - x + 2)(2 + x - 2) = 0

<=> x(4 - x) = 0

<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

Bình luận (2)
KK
5 tháng 9 2021 lúc 7:25

d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)

<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)

<=> (x - 5)(5x + 1) = 5x2 - 80

<=> 5x2 + x - 25x - 5 = 5x2 - 80

<=> 5x2 - 5x2 + x - 25x = -80 + 5

<=> -24x = -75

<=> x = \(\dfrac{25}{8}\)

Bình luận (1)
TT
5 tháng 9 2021 lúc 7:28

a)\(\left(x-2^2\right)-1=0\Rightarrow x-4-1=0\Rightarrow x=5\)

Bình luận (8)
TM
Xem chi tiết
H24
11 tháng 1 2023 lúc 19:41

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

Bình luận (0)
H24
11 tháng 1 2023 lúc 19:47

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

Bình luận (0)
H24
11 tháng 1 2023 lúc 19:48

\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Bình luận (0)
EN
Xem chi tiết
TT
22 tháng 12 2020 lúc 20:28

Rảnh rỗi thật sự .-.

undefined

Bình luận (0)
PH
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 8 2021 lúc 21:05

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
RK
28 tháng 8 2021 lúc 18:15

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

Bình luận (0)
NT
28 tháng 8 2021 lúc 21:20

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

Bình luận (0)
AJ
Xem chi tiết
KR
Xem chi tiết
NL
28 tháng 3 2021 lúc 5:58

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

Bình luận (1)
NM
Xem chi tiết
MS
12 tháng 2 2018 lúc 18:48

giải hết đống này chắc @@ quá,để tối đi,giờ t đi làm mấy bài ngắn ngắn

Bình luận (1)
LH
12 tháng 2 2018 lúc 20:30

a) x2+\(\dfrac{2x}{x-1}\)=8(ĐKXĐ : x ≠ 1

⇔ x2(x-1)+2x =8⇔ x3 - x2 +2x - 8=0

⇔x3 - 23 -x2+2x =0⇔ (x-2)(x2 +x+1) -x(x-2)

⇔(x-2)(x2 +1)⇒x =2

x2 +1 =0⇒x2 -1⇒x ∈∅(loại)

vậy x =2

Bình luận (2)
NV
12 tháng 2 2018 lúc 21:47

Giải phương trình :

a) \(x^2+\dfrac{2x}{x-1}=8\)

ĐKXĐ : \(x-1\ne0\Rightarrow x\ne1\)

Ta có : \(x^2+\dfrac{2x}{x-1}=8\)

\(\Leftrightarrow\) \(\dfrac{x^2\left(x-1\right)}{x-1}+\dfrac{2x}{x-1}=\dfrac{8\left(x-1\right)}{x-1}\)

\(\Rightarrow x^2\left(x-1\right)+2x=8\left(x-1\right)\)

\(\Leftrightarrow x^3-x^2+2x=8x-8\)

\(\Leftrightarrow x^3-x^2+2x-8x=-8\)

\(\Leftrightarrow x^3-x^2-6x+8=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(6x-8\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-2\left(3x-4\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x-1\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x-1=0\\3x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=1\\x=\dfrac{4}{3}\end{matrix}\right.\)

Đối chiếu với ĐKXĐ ta được \(x\in\left\{\sqrt{2};\dfrac{4}{3}\right\}\) thỏa mãn.

Bình luận (0)
TN
Xem chi tiết
NT
30 tháng 6 2021 lúc 10:53

c) Ta có: \(C=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

d)

Sửa đề: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)

Ta có: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)

\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)

\(=\dfrac{x+4}{2x-8}\)

Bình luận (0)