(2-x).(4+2x+x^2)=19
1)x^3-16x
2)x^4-2x^3
3)(2x-11)(x^2-1)
4)x^3-36x
5)2x+19
1)
x^3 -16x=0`
`<=>x(x^2 -16)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b)
`x^4 -2x^3=0`
`<=>x^3 (x-2)=0`
\(< =>\left[{}\begin{matrix}x^3=0\\x-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
3)
`(2x-11)(x^2 -1)=0`
\(< =>\left[{}\begin{matrix}2x-11=0\\x^2-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=11\\x^2=1\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=1\\x=-1\end{matrix}\right.\)
4)
`x^3 -36x=0`
`<=>x(x^2 -36)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
5)
`2x+19=0`
`<=>2x=-19`
`<=>x=-19/2`
Bài 19 Rút gọn
1) (x+2)^2+(3-x)^2
2) (4-x)^2 -(x-3)^2
3) (x-5)(x+5)-(x+5)^2
4) (x-3)^2-(x-4)(x+4)
5) (y^2 -6y+9)-(3-y)^2
6. (2x+3)² –(2x–3).(2x+3)
1) Ta có: \(\left(x+2\right)^2+\left(x-3\right)^2\)
\(=x^2+4x+4+x^2-6x+9\)
\(=2x^2-2x+13\)
2) Ta có: \(\left(4-x\right)^2-\left(x-3\right)^2\)
\(=\left(4-x-x+3\right)\left(4-x+x-3\right)\)
\(=-2x+7\)
3) Ta có: \(\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)
\(=x^2-25-x^2-10x-25\)
=-10x-50
4) Ta có: \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)\)
\(=x^2-6x+9-x^2+16\)
=-6x+25
5) Ta có: \(\left(y^2-6y+9\right)-\left(y-3\right)^2\)
\(=y^2-6y+9-y^2+6y-9\)
=0
6) Ta có: \(\left(2x+3\right)^2-\left(2x-3\right)\left(2x+3\right)\)
\(=4x^2+12x+9-4x^2+9\)
=12x+18
1) 2x – (3 – 5x) = 4( x +3)
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
3) 5x - 4(6-x)(x + 3) = (4-2x)(3-2x) + 2
4) (x - 1)3 - (3x + 2)(-12) = (x2 + 1)(x - 2) - x2
5) (3x -1)2 - (x +3)(2x-1) = 7(x + 1)(x -2) -3x
mn giúp mình vs
1) 2x – (3 – 5x) = 4( x +3)
<=>2x-3+5x=4x+12
<=>2x-3+5x-4x-12=0
<=>3x-15=0
<=>x=5
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
<=>10x-15-20x+28=19-2x-22
<=>10x-15-20x+28-19+2x+22=0
<=>-8x+16=0
<=>x=2
tham khảo
1) 2x – (3 – 5x) = 4( x +3)
<=>2x-3+5x=4x+12
<=>2x-3+5x-4x-12=0
<=>3x-15=0
<=>x=5
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
<=>10x-15-20x+28=19-2x-22
<=>10x-15-20x+28-19+2x+22=0
<=>-8x+16=0
<=>x=2
Bài 1 : giải phương trình
a) (x-2)(x+2)-(2x+1)2=x(2-3x)
b) 2x(x+2)2-8x2=2(x-2)(x2+2x+4)
c) (x-2)3+(3x-1)(3x+1)=(x+1)3
d) 5(2x-3)-4(5x-7)=19-2(x+1)2
a: \(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)
=>-6x-5=0
=>-6x=5
hay x=-5/6
b: \(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)
=>8x+16=0
hay x=-2
c: \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)
=>9x-10=0
hay x=10/9
d: \(\Leftrightarrow10x-15-20x+28=19-2x^2-4x-2\)
\(\Leftrightarrow-10x+13+2x^2+4x-17=0\)
\(\Leftrightarrow2x^2-6x-4=0\)
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
Bài 19 rút gọn
1) (x+2)^2+(3-x)^2
2) (4-x)^2-(x-3)^2
3) (x-5)(x+5)-(x+5)^2
4)(x-3)^2-(x-4)(x+4)
5) (y^2-6y+9)-(3-y)^2
6) (2x+3)^2-(2x-3)(2x+3)
1) Ta có: \(\left(x+2\right)^2+\left(x-3\right)^2\)
\(=x^2+4x+4+x^2-6x+9\)
\(=2x^2-2x+13\)
2) Ta có: \(\left(4-x\right)^2-\left(x-3\right)^2\)
\(=\left(4-x-x+3\right)\left(4-x+x-3\right)\)
\(=\left(-2x+7\right)\cdot1\)
\(=-2x+7\)
3) Ta có: \(\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)
\(=x^2-25-x^2-10x-25\)
\(=-10x-50\)
\(4\sqrt{x+3}+\sqrt{19-3x}=x^2+2x+9\)
\(x\sqrt{3-2x}=3x^26x+4\)
Tìm x biết
x^3 + 6x^2 +12x= 19
5(x + 9)^2(x - 4)^3 - 10(x + 9)^3(x - 4)^2 = 0
(2x + 3)^2 + (x - 2)^2 - 2(2x +3 )(x - 2)
`Answer:`
a. \(x^3+6x^2+12=19\)
\(\Leftrightarrow x^3+6x^2+12x-19=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)
Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)
\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)
\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)
\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)
c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(2x+3-x+2\right)^2\)
\(=\left(x+5\right)^2\)
a, Tính x^20 - 19x^19 + 18x^18 - 17x^17 + 16x^16 - 15x^15 với x= 19
b, tính: x^4 + y^4 - 2x^2y^2 biết x^2 + y^2 = 1
Tìm số nguyên x biết: a) x + 12 = 4; b) 19 - x = 0; c) 2x - 4 = -12;d) 2x- (-2) = 6
a)x=4-12=-8
b)x=19-0=19
c)x=-12+4:2=-4
d)x=6+(-2):2=2
Tim x x(x+5)(x-5) - (x+2)(x^2-2x+4)=5
(x+1)^3 - (x-1)^3 -6(x-1)^2 = -19
`#3107.101107`
\(x(x+5)(x-5) - (x+2)(x^2-2x+4)=5\)
`<=> x(x^2 - 25) - (x^3 + 2^3) = 5`
`<=> x^3 - 25x - x^3 - 8 = 5`
`<=> -25x - 8 = 5`
`<=> -25x = 13`
`<=> x = -13/25`
Vậy, `x = -13/25`
_____
\((x+1)^3 - (x-1)^3 -6(x-1)^2 = -19\)
`<=> x^3 + 3x^2 + 3x + 1 - (x^3 - 3x^2 + 3x - 1) - 6(x^2 - 2x + 1) = -19`
`<=> x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1 - 6x^2 + 12x - 6 = -19`
`<=> (x^3 - x^3) + (3x^2 + 3x^2 - 6x^2) + (3x - 3x + 12x) + (1 + 1 - 6) = -19`
`<=> 12x - 4 = -19`
`<=> 12x = -15`
`<=> x = -15/12 = -5/4`
Vậy, `x = -5/4.`
________
`@` Sử dụng các hđt:
`1)` `A^2 + B^2 = (A - B)(A + B)`
`2)` `A^3 + B^3 = (A + B)(A^2 - AB + B^2)`
`3)` `(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3`
`4)` `(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
`5)` `(A - B)^2 = A^2 - 2AB + B^2.`
a: \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=5\)
=>\(x\left(x^2-25\right)-x^3-8=5\)
=>\(x^3-25x-x^3-8=5\)
=>-25x=13
=>\(x=-\dfrac{13}{25}\)
b: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-19\)
=>\(6x^2+2-6x^2+12x-6=-19\)
=>12x-4=-19
=>12x=-15
=>x=-5/4