Phân tích các biểu thức sau thành nhân tử
A = 2cos2xcosx - 8cos2x + 7cosx - 1
Phân tích các đa thức sau thành nhân tử
a) 5a - 20b
b) y2 + 2y - x2 + 1
\(a,=5\left(a-4b\right)\\ b,=\left(y+1\right)^2-x^2=\left(y+1-x\right)\left(x+y+1\right)\)
a) 5a - 20b
= 5 ( a - 4b )
b) y^2 + 2y - x^2 + 1
= ( y^2 + 2y + 1 ) - x^2
= ( y + 1 )^2 - x^2
= ( y + 1 + x ) ( y + 1 - x )
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) 6x2 y-9xy
b)y2+10y+25
a) \(=3xy\left(2x-3\right)\)
b) \(=\left(y+5\right)^2\)
Phân tích các đa thức sau thành nhân tử
a) 36a4 – y2
b) x2 - 4xy + 4y2
c) 6x2 - 5x −1
\(a,=\left(6a^2-y\right)\left(6a^2+y\right)\\ b,=\left(x-2y\right)^2\\ c=\left(6x^2-6x\right)+\left(x-1\right)=6x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(6x+1\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) a2 - 10a + 25 - 4b2
b) a( x2 + 1 ) - x( a2 + 1 )
\(a,=\left(a-5\right)^2-4b^2=\left(a-2b-5\right)\left(a+2b-5\right)\\ b,=ax^2+a-a^2x-x=ax\left(a-x\right)+\left(a-x\right)=\left(ax+1\right)\left(a-x\right)\)
a: \(=\left(a-5-2b\right)\left(a-5+2b\right)\)
b: \(ax^2+a-a^2x-x\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(ax-1\right)\)
Bài 1 (1,5đ): Phân tích các đa thức sau thành nhân tử
a. 36a^4 - y^2 b.6x^2 + x - 2
a) \(36a^4-y^2=\left(6a^2-y\right)\left(6a^2+y\right)\)
b) \(6x^2+x-2=2x\left(3x+2\right)-1\left(3x+2\right)=\left(3x+2\right)\left(2x-1\right)\)
Phân tích các đa thức sau thành nhân tử
a) 9x2 - 16
b) x2 + 4xy + 4y2 - 3x - 6y
a) \(9x^2-16\)
\(=\left(3x\right)^2-4^2\)
\(=\left(3x-4\right)\left(3x+4\right)\)
b) \(x^2+4xy+4y^2-3x-6y\)
\(=\left(x^2+4xy+4y^2\right)-\left(3x+6y\right)\)
\(=\left[x^2+2\cdot x\cdot2y+\left(2y\right)^2\right]-3\left(x+2y\right)\)
\(=\left(x+2y\right)^2-3\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-3\right)\)
#\(Toru\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
a) \(=mp\left(m^2+mn-mp-np\right)=mp\left[m\left(m+n\right)-p\left(m+n\right)\right]=mp\left(m+n\right)\left(m-p\right)\)
b) \(=abm^2+abn^2+a^2mn+b^2mn=am\left(bm+an\right)+bn\left(bm+an\right)\)
\(=\left(bm+an\right)\left(am+bn\right)\)
phân tích các đa thức sau thành nhân tử
a) 8x^3 - 1/125y^3
b) -x^3 + 6x^2y - 12xy^2 + 8y^3
a
\(8x^3-\dfrac{1}{125}y^3\\ =\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\\ =\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\\ =\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)\)
b
\(-x^3+6x^2y-12xy^2+8y^3\\ =-\left(x^3-6x^2y+12xy^2-8y^3\right)\\ =-\left(x^3-3.2y.x^2+3.\left(2y\right)^2.x-\left(2y\right)^3\right)\\ =-\left(x-2y\right)^3\\ =-\left(x-2y\right)\left(x-2y\right)\left(x-2y\right)\)
a: 8x^3-1/125y^3
=(2x)^3-(1/5y)^3
=(2x-1/5y)(4x^2+2/5xy+1/25y^2)
b: =(2y-x)^3
a) \(8x^3-\dfrac{1}{125}y^3\)
\(=\left(2x\right)^3-\left(\dfrac{1}{5}y\right)^3\)
\(=\left(2x-\dfrac{1}{5}y\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\right]\)
\(=\left(2x-\dfrac{1}{5}y\right)\left(4x^2+\dfrac{2}{5}xy+\dfrac{1}{24}y^2\right)\)
b) \(-x^3+6x^2y-12xy^2+8y^3\)
\(=-\left(x^3-6x^2y+12xy^2-8y^2\right)\)
\(=-\left(x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\right)\)
\(=-\left(x-2y\right)^3\)
Phân tích các đa thức sau thành nhân tử
a,3x2 + 6xy + 3y2 - 3z
b,,x3 + x2y - x2z - xyz đ
`@` `\text {Ans}`
`\downarrow`
`a,`
`3x^2 + 6xy + 3y^2 - 3z`
`= 3*x^2 + 3*2xy + 3y^2 - 3z`
`= 3(x^2 + 2xy + y^2 - z)`
`b,`
`x^3 + x^2y - x^2z - xyz`
`= x(x + y)(x-z)`
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6