Những câu hỏi liên quan
HH
Xem chi tiết
DL
6 tháng 2 2022 lúc 15:26

\(\Leftrightarrow\left(\left(x-3\right)^2\right)^2-9\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2.\left(x-3\right)^2-9\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2.\left(\left(x-3\right)^2-9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(\left(x-3\right)^2-3^2\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x-3+3\right)\left(x-3-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)^2\left(x-6\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=0\\\left(x-3\right)^2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=3\\x=6\end{matrix}\right.\)

Vậy pt f(x) có tập nghiệm \(f\left(x\right)\in\left\{0;3;6\right\}\)

Bình luận (0)
NT
6 tháng 2 2022 lúc 15:22

\(\Leftrightarrow\left(x-3\right)^2\cdot\left[\left(x+3\right)^2-9\right]=0\)

\(\Leftrightarrow x\left(x-3\right)^2\cdot\left(x+6\right)=0\)

hay \(x\in\left\{0;3;-6\right\}\)

Bình luận (0)
HP
Xem chi tiết
H24
25 tháng 12 2016 lúc 13:11

\(\frac{\left(x-3\right)}{x^2+4x+9}+2+\frac{x^2+4x+9}{x-3}=0\)

\(x^2+4x+9=\left(x+2\right)^2+5\ge5\)

x>3 hiển nhiên vô nghiệm

xét x<3

\(\frac{!\left(x-3\right)!}{x^2+4x+9}+\frac{x^2+4x+9}{!x-3!}\ge2\)

vậy pt chỉ nghiệm

khi \(\frac{!\left(x-3\right)!}{x^2+4x+9}=\frac{x^2+4x+9}{!x-3!}\Leftrightarrow x^2+4x+9=!x-3!\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\)

25-24=1

=>

x=-3 loại 

x=-2 nhận

Bình luận (0)
TN
25 tháng 12 2016 lúc 13:15

Đk:....

Đặt \(\hept{\begin{cases}a=x-3\\b=x^2+4x+9\end{cases}}\) pt trở thành

\(\frac{a}{b}+2+\frac{b}{a}=0\)\(\Leftrightarrow\frac{a^2}{ab}+\frac{2ab}{ab}+\frac{b^2}{ab}=0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2}{ab}=0\)\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a=-b\)\(\Leftrightarrow x-3=-\left(x^2+4x+9\right)\)

\(\Leftrightarrow x-3=-x^2-4x-9\)\(\Leftrightarrow x^2+5x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

Bình luận (0)
H24
25 tháng 12 2016 lúc 13:20

-3 vẫn nhận nhầm cứ nghĩ là 3

Bình luận (0)
NT
Xem chi tiết
TP
12 tháng 11 2015 lúc 20:05

PT (1) <=> x = 3y + 3. Thay  x = 3y + 3 vào PT (2) ta có: \(\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-9=0\Leftrightarrow10y^2+10y-6=0\Leftrightarrow y=\frac{-5+\sqrt{85}}{10}\)hoặc \(y=\frac{-5-\sqrt{85}}{10}\)

- Nếu \(y=\frac{-5+\sqrt{85}}{10}\) \(\Rightarrow x=3y+3=\frac{15+3\sqrt{85}}{10}\)

- Nếu \(y=\frac{-5-\sqrt{85}}{10}\Rightarrow x=3y+3=\frac{15-3\sqrt{85}}{10}\) 

Bình luận (0)
TH
Xem chi tiết
PQ
20 tháng 10 2018 lúc 20:04

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

Bình luận (0)
DT
Xem chi tiết
TM
25 tháng 9 2020 lúc 15:49

Bài toán :

căn bậc hai(x-2)*(x-3) - căn bậc hai(x^2) -9 = 0

Lời giải:

Tập xác định của phương trình

Biến đổi vế trái của phương trình

Phương trình thu được sau khi biến đổi

Lời giải thu được

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
MN
9 tháng 2 2020 lúc 18:19

\(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)

\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-2x-3\right)\)

\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)

\(\Leftrightarrow-15x+18x+7+27=0\)

\(\Leftrightarrow3x+34=0\)

\(\Leftrightarrow x=\frac{-34}{3}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{34}{3}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
H24
19 tháng 2 2023 lúc 10:21

`1/9(x-3)^2-1/25(x+5)^2=0`

`<=>(1/3x-1)^2-(1/5x+1)^2=0`

`<=>(1/3x-1-1/5x-1)(1/3x-1+1/5x+1)=0`

`<=>(2/15x-2). 8/15x=0`

`<=>2/15x-2=0` hoặc `8/15x=0`

`<=>x=15`         hoặc `x=0`

Vậy `S=`{`15;0`}

Bình luận (0)
TN
Xem chi tiết
NL
17 tháng 9 2021 lúc 15:35

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)

\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
H24
15 tháng 5 2021 lúc 10:35

`1)x^4 -10x^3 +26x^2 -10x+1=0`
`x=0=>VT=1=>x=0(l)`
Chia 2 vế cho `x^2>0` ta có
`x^2-10x+26-10/x+1/x^2=0`
`=>x^2+1/x^2+26-10(x+1/x)=0`
`=>(x+1/x)^2-10(x+1/x)+24=0`
Đặt `a=x+1/x`
`pt<=>a^2-10a+24=0`
`<=>` $\left[ \begin{array}{l}a=4\\a=6\end{array} \right.$
`a=4<=>x+1/x=4<=>x^2-4x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt3+2\\x=-\sqrt3+2\end{array} \right.$
`a=6<=>x+1/x=6<=>x^2-6x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt8+3\\x=-\sqrt8+3\end{array} \right.$
Vậy `S={\sqrt3+2,-\sqrt3+2,\sqrt8+3,-\sqrt8+3}`

Bình luận (1)
H24
15 tháng 5 2021 lúc 10:42

2)Do hệ số chẵn bằng=hệ số lẻ
`=>x=-1`
`pt<=>x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0`
`<=>(x+1)(x^3+4x^2+6x+9)=0`
`<=>(x+1)(x^3+3x^2+x^2+6x+9)=0`
`<=>(x+1)[x^2(x+3)+(x+3)^2]=0`
`<=>(x+1)(x+3)(x^2+x+3)=0`
Do `x^2+x+3=(x+1/2)^2+11/4>0`
`=>` $\left[ \begin{array}{l}x=-3\\x=-1\end{array} \right.$
Vậy `S={-1,-3}`

Bình luận (0)
MT
Xem chi tiết
TP
14 tháng 8 2019 lúc 19:42

ĐK: \(\left[{}\begin{matrix}x\le-3\\x\ge3\end{matrix}\right.\)

\(\sqrt{x+3}-2\sqrt{x^2-9}=0\)

\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x+3}\cdot\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(1-2\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\2\sqrt{x-3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{13}{4}\end{matrix}\right.\)( thỏa )

Vậy....

Bình luận (0)