rút gọn: \(3\sqrt{9a^6}-6a^3\)
Bài 7: Rút Gọn Các Biểu Thức Sau
a. 5\(\sqrt{25^2}\) - 25x Với X<O
B \(\sqrt{49a^2}\) + 3a Với a \(\ge\) 0
C \(\sqrt{16a^4}\) + 6a\(^2\) Với a Bất Kì
d 3\(\sqrt{9a^6}\) - 6a\(^3\) với a bất kì
e 3\(\sqrt{9a^6}\) - 6a\(^3\) Với a\(\ge\) 0
f \(\sqrt{16a^{10}}\) + 6a\(^5\) với a \(\le0\)
b: B=căn 49a^2+3a
=|7a|+3a
=7a+3a(a>=0)
=10a
c: C=căn16a^4+6a^2
=4a^2+6a^2
=10a^2
d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)
TH1: a>=0
D=6a^3-6a^3=0
TH2: a<0
D=-6a^3-6a^3=-12a^3
e: \(E=3\sqrt{9a^6}-6a^3\)
\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)
=3*3a^3-6a^3(a>=0)
=3a^3
f: \(F=\sqrt{16a^{10}}+6a^5\)
\(=\sqrt{\left(4a^5\right)^2}+6a^5\)
=-4a^5+6a^5(a<=0)
=2a^5
bài 1 Rút gọn biểu thức:
a) 5\(\sqrt{25a^2}-25\) với a<0
b)\(\sqrt{49a^2}+3a\) với a<0
c)3\(\sqrt{9a^6}-6a^3\) với a bất kì
a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)
b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)
c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)
a) 5\(\sqrt{25a^2}\) - 25 với a < 0
= 5\(\sqrt{\left(5a\right)^2}\) - 25
= 5.\(\left|5a\right|\) - 25
= 5.-(5a) - 25
= -25a - 25 Vì a < 0
b) \(\sqrt{49a^2}\) + 3a với a < 0
= \(\sqrt{\left(7a\right)^2}\) + 3a
= \(\left|7a\right|\) + 3a
= -7a + 3a Vì a < 0
= -4a
c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì
= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3
= 3\(\left|3a^3\right|\) - 6a3
= 9a3 - 6a3
= 3a3
Chúc bạn học tốt
a) \(5\sqrt{25a^2}-25=-25a-25\)
b) \(\sqrt{49a^2}+3a=-7a+3a=-4a\)
c) \(3\sqrt{9a^6}-6a^3=6a^3-6a^3=0\)
Bài 1: Rút gọn
\(3\sqrt{9a^6}-6a^3\) (với mọi a)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}\) (Với \(\dfrac{1}{3}\) < x ≤ 1 )
\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) (với 1<x<2)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) (với x ≥4)
\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)
\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)
\(=2\sqrt{x-4}\)
Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Rút gọn
3√9a^6 -6a^3
\(A=\sqrt{64a^2}\cdot2a=\sqrt{\left(8a\right)^2}\cdot2a=\left|8a\right|\cdot2a\)
Với a < 0 A = 8a.(-2a) = -16a2
Với a ≥ 0 A = 8a.2a = 16a2
\(B=3\sqrt{9a^6}-6a^3=3\sqrt{\left(3a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)
Rút gọn:
\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\)
\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ < =>\sqrt{8^2.a^2}+2a\\ < =>\sqrt{\left(8a\right)^2+2a}\\ < =>\left|8a\right|+2a\\ < =>8a+2a\\ < =>10a\left(TM\right)vìa\ge0\)
\(b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ < =>3\sqrt{\left(3a^2\right)^2}-6a^3\\ < =>3\left|3a^3\right|-6a^3\\ \)
Nếu \(a\ge0\) thì giá trị của biểu thức là:
\(3.3a^2-6a^2\\ =9a^3-6a^3\\ =3a^3\)
Nếu a<0 thì giá trị của biểu thức là:
\(3\left(-3a^3\right)-6a^3=-9a^3\\ =-6a^3=-15a^3\)
\(c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ =\left|a+3\right|+\left|a-3\right|\\ =a+3+a-3\\ =2a\)
1.rút gọn biểu thức: \(C=\frac{3}{3a-1}.\sqrt{5a.\left(1-6a+9a^2\right)}\)với a>1/3
\(C=\frac{3}{3a-1}\sqrt{5a\left(1-6a+9a^2\right)}=\frac{3}{3a-1}\sqrt{5a\left(1-3a\right)^2}=\frac{3}{3a-1}\sqrt{5a}\left(3a-1\right)\) (Vì a>1/3 nên 1-3a<0
\(=3\sqrt{5a}\)
\(C=\frac{3}{3a-1}\cdot\sqrt{5a}l1-3al\)
\(=\frac{3}{3a-1}\cdot\sqrt{5a}\cdot\left(3a-1\right)\) ( vì a > 1/3)
= \(3\sqrt{5a}\)
rút gọn các biểu thức sau:
\(\sqrt{16a^4}+6a^2\) với a bất kì
\(3\sqrt{9a^6}-6a^3\) với a bất kì
\(\sqrt{16a^4}+6a^2=\sqrt{16\left(a^2\right)^2}+6a^2=4a^2+6a^2=10a^2\)
(vì a2 ≥ 0 ∀ a)
\(3\sqrt{9a^6}-6a^3=3\sqrt{9\left(a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)
(vì a3 có thể là số âm, dương hoặc bằng 0 tùy thuộc vào giá trị của a nên đặt trong dấu GTTĐ)
Có 2 trường hợp:
+ T/h 1: a ≥ 0 ta có \(9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)
+ T/h 2: a < 0 ta có \(9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)
( dấu trừ ở trước số 9a3 là kí hiệu số đối nha)
+ \(\sqrt{16a^4}+6a^2\)
\(=4a^2+6a^2=10a^2\)
+ \(3\sqrt{9a^6}-6a^3\)
\(=3\left|3a^3\right|-6a^3\)
\(=\left\{{}\begin{matrix}9a^3-6a^3=3a^3vớia\ge0\\-9a^3-6a^3=-15a^3vớia< 0\end{matrix}\right.\)
Rút gọn các biểu thức:
a)\(\sqrt{16a^4}+6a^2\) với a bất kì
b)\(3\sqrt{9a^6}-6a^3\) với a bất kì
a) \(\sqrt{16a^4}+6a^2\) =\(\sqrt{\left(4a^2\right)^2}+6a^2\) = 4a2+6a2 = 10a2
b) \(3\sqrt{9a^6}-6a^3\) = \(3\sqrt{3a^3}^2-6a^3\) = 9a3-6a3 = 3a3
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)