Những câu hỏi liên quan
H24
Xem chi tiết
NT
26 tháng 1 2023 lúc 15:09

a: \(=\dfrac{2x+x-2-x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

b: x^2-x-6=0

=>(x-3)(x+2)=0

=>x=3(nhận) hoặc x=-2(loại)

Khi x=3 thì \(E=\dfrac{2}{3+2}=\dfrac{2}{5}\)

c: Để E nguyên thì \(x+2\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{-1;-3;0;-4\right\}\)

Bình luận (0)
PL
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 2 2021 lúc 16:25

Câu 4:

D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp

\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)

Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)

Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))

\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)

./

Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)

Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác

Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)

Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q

Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)

\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)

Mặt khác BP song song MF (cùng song song AC)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)

Bình luận (3)
NL
22 tháng 2 2021 lúc 16:26

Hình vẽ câu 4:

undefined

Bình luận (0)
NL
22 tháng 2 2021 lúc 16:28

Câu 5:

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=1+x+1-x+2\sqrt{\left(1+x\right)\left(1-x\right)}=2+2\sqrt{1-x^2}\)

Do đó pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\)

\(\Leftrightarrow t=2\Leftrightarrow\sqrt{1-x}+\sqrt{1+x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=4\Leftrightarrow\sqrt{1-x^2}=1\)

\(\Leftrightarrow1-x^2=1\)

\(\Leftrightarrow x=0\)

Bình luận (0)
UT
Xem chi tiết
NT
24 tháng 8 2021 lúc 22:36

Bài 11:

a: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)

\(=\sqrt{x}\cdot\left(\sqrt{x}-1\right)\)

\(=x-\sqrt{x}\)

b: Để P=2 thì \(x-\sqrt{x}-2=0\)

hay x=4

Bình luận (0)
NT
24 tháng 8 2021 lúc 22:39

Bài 10:

a: Ta có: \(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{x+1}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để A<0 thì \(\sqrt{x}-1< 0\)

hay x<1

Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)

Để A=-1 thì \(x+\sqrt{x}+1=-\sqrt{x}+1\)

\(\Leftrightarrow x=0\)

c: Thay x=4 vào A, ta được:

\(A=\dfrac{4+2+1}{2-1}=7\)

Bình luận (0)
AH
Xem chi tiết
VG
Xem chi tiết
TK
16 tháng 11 2021 lúc 16:49

:))))

Bình luận (1)
PT
Xem chi tiết
PT
5 tháng 1 2022 lúc 7:30

Câu c á là Ba=137 nha đó chỗ đó bị mờ

Bình luận (0)
KA
Xem chi tiết
ND
15 tháng 7 2021 lúc 13:50

nNa2SO4= 9,94/142=0,07(mol);

mBa(OH)2= 20,52(g) -> nBa(OH)2=0,12(mol)

PTHH: Na2SO4 + Ba(OH)2 -> BaSO4 + 2 NaOH

Ta cps: 0,07/1 < 0,12/1

=> Ba(OH)2 dư, Na2SO4  hết, tính theo nNa2SO4.

-> nBaSO4=nNa2SO4= 0,07(mol)

=> m(kết tủa)=mBaSO4=0,07.233=16,31(g)

=>m=16,31(g)

b) Dung dịch A thu được bao gồm NaOH và Ba(OH)2 dư.

nNaOH=2.0,07=0,14(mol) => mNaOH= 0,14.40=5,6(g)

nBa(OH)2 (dư)=0,12-0,07=0,05(mol)

=> mBa(OH)2 (dư)= 0,05.171=8,55(g)

=> mddA=Na2SO4 + mddBa(OH)2 - mBaSO4 = 9,94+ 100 - 16,31= 93,63(g)

=> C%ddBa(OH)2 (dư)= (8,55/93,63).100=9,132%

C%ddNaOH= (5,6/93,63).100=5,981%

 

Bình luận (1)