Những câu hỏi liên quan
NO
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 1 2019 lúc 16:48

Vì các nghiệm của phương trình thuộc khoảng  ( 0 ;   2 π ) nên nghiệm của phương trình là 

Bình luận (0)
BT
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 6 2019 lúc 6:11

Chọn A

Ta có sin3x+ cos2x- sinx= 0 ⇔ cos2x(2sinx+1)=0. Lưu ý trong khoảng (0;π), sinx > 0

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 1 2018 lúc 1:54

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 11 2017 lúc 13:27

Bình luận (0)
H24
Xem chi tiết
AH
7 tháng 10 2021 lúc 9:40

Lời giải:
\(\sin 3x=-\sin x=\sin (-x)\)

\(\Leftrightarrow \left[\begin{matrix} 3x=-x+2k\pi\\ 3x=\pi +x+2t\pi\end{matrix}\right.\) với $t,k$ nguyên bất kỳ

\(\Leftrightarrow \left[\begin{matrix} x=\frac{k\pi}{2}\\ x=\frac{(2t+1)\pi}{2}\end{matrix}\right.\) với $k,t$ nguyên bất kỳ

Để $x\in [0; 100\pi]$ thì \(\left\{\begin{matrix} 0\leq \frac{k}{2}\leq 100\\ 0\leq \frac{2t+1}{2}\leq 100\end{matrix}\right.\)

Vì $t,k$ nguyên nên:

$k\in \left\{0;1;2;...;200\right\}$ $\rightarrow 201$ giá trị

$t\in \left\{0;1;2;,,,;99\right\}$ $\rightarrow 100$ giá trị

Vậy có: $201+100=301$ nghiệm.

 

Bình luận (1)
PB
Xem chi tiết
CT
22 tháng 8 2017 lúc 5:20

Bình luận (0)
JP
Xem chi tiết
NT
7 tháng 9 2023 lúc 21:26

=>2cos2x=pi(loại) hoặc sin x-cosx=0

=>sin x-cosx=0

=>sin(x-pi/4)=0

=>x-pi/4=kpi

=>x=kpi+pi/4

mà x\(\in\left[-pi;pi\right]\)

nên \(x\in\left\{\dfrac{pi}{4};-\dfrac{3}{4}pi\right\}\)

=> D

Bình luận (1)
NT
Xem chi tiết
NL
25 tháng 12 2020 lúc 13:22

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

Bình luận (0)