Tìm x, biết : \(\sqrt{x^2+1}-x=1\)
Tìm x, biết:
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
Tìm x, biết:
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
Lời giải:
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}-\sqrt{(x-1)-2\sqrt{x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}-\sqrt{(\sqrt{x-1}-1)^2}=2$
$\Leftrightarrow |\sqrt{x-1}+1|-|\sqrt{x-1}-1|=2$
Nếu $2\geq x\geq 1$ thì:
$\sqrt{x-1}+1+(1-\sqrt{x-1})=2$
$\Leftrightarrow 2=2$ (luôn đúng)
Nếu $x>2$ thì: $\sqrt{x-1}+1+(\sqrt{x-1}-1)=2$
$\Leftrightarrow 2\sqrt{x-1}=2$
$\Leftrightarrow x-1=1$
$\Leftrihgtarrow x=2$ (loại)
Vậy $2\geq x\geq 1$
$
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm x, biết:
\(\sqrt{x+2\sqrt{x-11}}-\sqrt{x-2\sqrt{x-1}}=2\)
Mình sửa lại đề tí:
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
\(\Leftrightarrow\sqrt{x-1}-\left|\sqrt{x-1}-1\right|=1\)
TH1: \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\) pt trở thành:
\(\sqrt{x-1}-\left(\sqrt{x-1}-1\right)=1\) (luôn đúng)
TH2: \(1\le x< 2\)
\(\Rightarrow\sqrt{x-1}-\left(1-\sqrt{x-1}\right)=1\)
\(\Leftrightarrow2\sqrt{x-1}=2\Rightarrow x=2\) (ktm)
Vậy nghiệm của pt là \(x\ge2\)
Tìm x biết
\(\dfrac{\sqrt{x-1}}{\sqrt{x+3}}\)=\(\dfrac{\sqrt{x-2}}{1}\)
\(\dfrac{\sqrt{x-1}}{\sqrt{x+3}}=\dfrac{\sqrt{x-2}}{1}\)(Đk x>2;x≠-3)
⇔\(\sqrt{\left(x-2\right)\left(x+3\right)}=\sqrt{x-1}\)
⇔\(\left(x-2\right)\left(x+3\right)=x-1\)
⇔\(x^2+x-6-x+1=0\)
⇔\(x^2-5=0\)
⇔\(x^2=5\)
⇔x=\(\pm\sqrt{5}\)(thỏa điều kiện)
Vậyx=\(\pm\sqrt{5}\)
ĐKXĐ:x khác -3; x≥2
quy đồng và khử mẩu 2 vế ta đc:
\(\sqrt{x-1}=\sqrt{x-2}\cdot\sqrt{x+3}\)Bình phương 2 vế ta đc:
x-1=(x-2)*(x+3)<=> x-1=x2+x-6 <=> x2-5=0
<=>\(\left\{{}\begin{matrix}x=\sqrt{5}\left(nhận\right)\\x=-\sqrt{5}\left(loại\right)\end{matrix}\right.\)
vậy x=\(\sqrt{5}\)
\(P=\left(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\) với x ≥ 0, x ≠ 1
a, Rút gọn P
b, Tìm giá trị biểu thức biết x = \(\sqrt{3+2\sqrt{2}}\)
\(a,P=\left[\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left[\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\\ P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\\ P=\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2\\ P=\left(x-1\right)^2\\ b,x=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\ \Leftrightarrow P=\left(\sqrt{2}+1-1\right)^2=\left(\sqrt{2}\right)^2=2\)
a) \(P=\left(\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)=\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]^2=\left(x-1\right)^2\)
\(P=\left(x-1\right)^2=\left(\sqrt{\left(\sqrt{2}+1\right)^2}-1\right)^2=\left(\sqrt{2}\right)^2=2\)
bài 1
a,tìm đkxđ của x để biểu thức
A=\(\sqrt{2x}+2\sqrt{x+5}\) xác định
b,rút gọn biểu thức B=\(\left(\sqrt{3-1^2}\right)+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\)
bài 3 cho x ≥ 0,x≠1,x≠9 tìm x biết
\(\left(1-\dfrac{x+\sqrt{x}}{\sqrt{1+x}}\right).\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{2}{\sqrt{x-3}}\right)-2\)
\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)
B =\(\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)
Tìm các giá trị nguyên của x để \(\dfrac{A}{B}< 1\) biết A=\(\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(B=\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x-3-2\left(\sqrt{x}-1\right)+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}-2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(ĐặtP=\dfrac{A}{B}\)
=>\(P=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2\sqrt{x}-2}{\sqrt{x}}\)
Để P<1 thì P-1<0
=>\(\dfrac{2\sqrt{x}-2-\sqrt{x}}{\sqrt{x}}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
mà x nguyên
nên \(x\in\left\{0;1;2;3\right\}\)
Bài 3:
P = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a) Rút gọn P ( đkxđ)
b) Tính P khi x = 1/4
c) Tìm x để P < 1/2
d) Tìm x biết P = 2/3
e) Tìm X thuộc Z để P thuộc Z
a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)
c: Ta có: \(P< \dfrac{1}{2}\)
\(\Leftrightarrow P-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\sqrt{x}< 3\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
Tìm x để \(\sqrt{P}=\dfrac{1}{2}\) biết \(P=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Ta biết: \(\sqrt{P}=\dfrac{1}{2}\Rightarrow P=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\) (1)
Với đk: \(P\ge0\)
\(\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\ge0\)
\(\Leftrightarrow\sqrt{x}-2\ge0\) (vì \(\sqrt{x}+1\ge1>0\forall x\ge0\))
\(\Leftrightarrow\sqrt{x}\ge2\)
\(\Leftrightarrow x\ge4\)
\(\left(1\right)\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}-2\right)=\sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-8=\sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-\sqrt{x}=1+8\)
\(\Leftrightarrow3\sqrt{x}=9\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow x=3^2\)
\(\Leftrightarrow x=9\left(tm\right)\)
Vậy: ...