Những câu hỏi liên quan
NL
Xem chi tiết
NU
22 tháng 11 2021 lúc 20:02

undefined

Bình luận (0)
MN
Xem chi tiết
AH
9 tháng 8 2021 lúc 17:22

Lời giải:

ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}-\sqrt{(x-1)-2\sqrt{x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}-\sqrt{(\sqrt{x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{x-1}+1|-|\sqrt{x-1}-1|=2$
Nếu $2\geq x\geq 1$ thì:

$\sqrt{x-1}+1+(1-\sqrt{x-1})=2$
$\Leftrightarrow 2=2$ (luôn đúng)

Nếu $x>2$ thì: $\sqrt{x-1}+1+(\sqrt{x-1}-1)=2$
$\Leftrightarrow 2\sqrt{x-1}=2$
$\Leftrightarrow x-1=1$

$\Leftrihgtarrow x=2$ (loại)

Vậy $2\geq x\geq 1$

$

Bình luận (0)
VC
Xem chi tiết
OO
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Bình luận (0)
NC
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Bình luận (0)
MN
Xem chi tiết
MN
14 tháng 8 2021 lúc 7:49

Mình sửa lại đề tí:

\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

Bình luận (0)
NL
14 tháng 8 2021 lúc 8:08

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

\(\Leftrightarrow\sqrt{x-1}-\left|\sqrt{x-1}-1\right|=1\)

TH1: \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\) pt trở thành:

\(\sqrt{x-1}-\left(\sqrt{x-1}-1\right)=1\) (luôn đúng)

TH2: \(1\le x< 2\)

\(\Rightarrow\sqrt{x-1}-\left(1-\sqrt{x-1}\right)=1\)

\(\Leftrightarrow2\sqrt{x-1}=2\Rightarrow x=2\) (ktm)

Vậy nghiệm của pt là \(x\ge2\)

Bình luận (0)
H24
Xem chi tiết
TK
25 tháng 5 2021 lúc 12:06

\(\dfrac{\sqrt{x-1}}{\sqrt{x+3}}=\dfrac{\sqrt{x-2}}{1}\)(Đk x>2;x≠-3)

\(\sqrt{\left(x-2\right)\left(x+3\right)}=\sqrt{x-1}\)

\(\left(x-2\right)\left(x+3\right)=x-1\)

\(x^2+x-6-x+1=0\)

\(x^2-5=0\)

\(x^2=5\)

⇔x=\(\pm\sqrt{5}\)(thỏa điều kiện)

Vậyx=\(\pm\sqrt{5}\)

Bình luận (1)
NM
25 tháng 5 2021 lúc 12:08

ĐKXĐ:x khác -3; x≥2

quy đồng và khử mẩu 2 vế ta đc:

\(\sqrt{x-1}=\sqrt{x-2}\cdot\sqrt{x+3}\)Bình phương 2 vế ta đc:

x-1=(x-2)*(x+3)<=> x-1=x2+x-6 <=>  x2-5=0

<=>\(\left\{{}\begin{matrix}x=\sqrt{5}\left(nhận\right)\\x=-\sqrt{5}\left(loại\right)\end{matrix}\right.\)

vậy x=\(\sqrt{5}\)

Bình luận (0)
NL
Xem chi tiết
NM
22 tháng 11 2021 lúc 17:04

\(a,P=\left[\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left[\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\\ P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\\ P=\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2\\ P=\left(x-1\right)^2\\ b,x=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\ \Leftrightarrow P=\left(\sqrt{2}+1-1\right)^2=\left(\sqrt{2}\right)^2=2\)

Bình luận (0)
LL
22 tháng 11 2021 lúc 17:06

a) \(P=\left(\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)=\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]^2=\left(x-1\right)^2\)

\(P=\left(x-1\right)^2=\left(\sqrt{\left(\sqrt{2}+1\right)^2}-1\right)^2=\left(\sqrt{2}\right)^2=2\)

Bình luận (0)
LD
Xem chi tiết
NM
31 tháng 10 2021 lúc 8:50

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)

Bình luận (0)
2S
Xem chi tiết
NT
10 tháng 12 2023 lúc 0:12

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(B=\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-3-2\left(\sqrt{x}-1\right)+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}-2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(ĐặtP=\dfrac{A}{B}\)

=>\(P=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2\sqrt{x}-2}{\sqrt{x}}\)

Để P<1 thì P-1<0

=>\(\dfrac{2\sqrt{x}-2-\sqrt{x}}{\sqrt{x}}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 8 2021 lúc 0:04

a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)

c: Ta có: \(P< \dfrac{1}{2}\)

\(\Leftrightarrow P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

Bình luận (0)
2S
Xem chi tiết
H9
20 tháng 11 2023 lúc 16:59

Ta biết: \(\sqrt{P}=\dfrac{1}{2}\Rightarrow P=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\) (1)

Với đk: \(P\ge0\)

\(\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\ge0\) 

\(\Leftrightarrow\sqrt{x}-2\ge0\) (vì \(\sqrt{x}+1\ge1>0\forall x\ge0\))

\(\Leftrightarrow\sqrt{x}\ge2\)

\(\Leftrightarrow x\ge4\) 

\(\left(1\right)\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{4}\)

\(\Leftrightarrow4\left(\sqrt{x}-2\right)=\sqrt{x}+1\)

\(\Leftrightarrow4\sqrt{x}-8=\sqrt{x}+1\)

\(\Leftrightarrow4\sqrt{x}-\sqrt{x}=1+8\)

\(\Leftrightarrow3\sqrt{x}=9\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow x=3^2\)

\(\Leftrightarrow x=9\left(tm\right)\)

Vậy: ... 

Bình luận (0)