2S

B =\(\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)

Tìm các giá trị nguyên của x để \(\dfrac{A}{B}< 1\) biết A=\(\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)

 

NT
10 tháng 12 2023 lúc 0:12

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(B=\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-3-2\left(\sqrt{x}-1\right)+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}-2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(ĐặtP=\dfrac{A}{B}\)

=>\(P=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2\sqrt{x}-2}{\sqrt{x}}\)

Để P<1 thì P-1<0

=>\(\dfrac{2\sqrt{x}-2-\sqrt{x}}{\sqrt{x}}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

Bình luận (0)

Các câu hỏi tương tự
2S
Xem chi tiết
MB
Xem chi tiết
H24
Xem chi tiết
YT
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
HV
Xem chi tiết
HM
Xem chi tiết
NV
Xem chi tiết