Những câu hỏi liên quan
H24
Xem chi tiết
NT
27 tháng 2 2023 lúc 20:56

a: Δ=(4m+3)^2-4*2*(2m^2-1)

=16m^2+24m+9-16m^2+8

=24m+17

Để phương trình có hai nghiệm phân biệt thì 24m+17>0

=>m>-17/24

b: Để phương trìh có nghiệm kép thì 24m+17=0

=>m=-17/24

c: Để phương trình vô nghiệm thì 24m+17<0

=>m<-17/24

Bình luận (0)
HD
Xem chi tiết
TC
25 tháng 8 2021 lúc 16:52

undefined

Bình luận (0)
NT
26 tháng 8 2021 lúc 0:10

a: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m+6\right)\)

\(=4m^2-4m-24\)

\(=4\left(m^2-m-6\right)\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow m^2-m-6>0\)

\(\Leftrightarrow\left(m-3\right)\left(m+2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)

b: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(m+3\right)\)

\(=4m^2-4m^2-12m\)

=-12m

Để phương trình vô nghiệm thì Δ<0

hay m>0

c: Ta có: \(\text{Δ}=\left(2m-3\right)^2-4\left(m-2\right)\left(m+1\right)\)

\(=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=4m^2-12m+9-4m^2+4m+8\)

\(=-8m+17\)

Để phương trình có nghiệm kép thì Δ=0

hay \(m=\dfrac{17}{8}\)

Bình luận (0)
LM
Xem chi tiết
NL
21 tháng 1 2024 lúc 16:28

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

Bình luận (1)
TT
Xem chi tiết
NL
1 tháng 4 2021 lúc 16:37

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

Bình luận (0)
HD
Xem chi tiết
NT
25 tháng 8 2021 lúc 17:57

a, Để pt có 2 nghiệm pb khi \(\Delta>0\)

\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)

b, Để pt trên là pt bậc 2 khi \(m\ne0\)

Để pt vô nghiệm khi \(\Delta< 0\)

\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)

c, Để pt trên là pt bậc 2 khi \(m\ne2\)

Để pt trên có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
19 tháng 6 2017 lúc 12:26

b)

Phương trình có nghiệm kép khi và chỉ khi

Δ = 0 ⇔ 4 m - 1 2  = 0 ⇔ m = 1

Khi đó nghiệm kép của phương trình là:

x = (-b)/2a = 2m/2 = m = 1

Bình luận (0)
XT
Xem chi tiết
NT
4 tháng 3 2022 lúc 16:38

a,để pt có nghiệm kép 

 \(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)

\(x_1=x_2=\dfrac{2m}{2}=m=1\)

b, để pt có nghiệm \(m\ge1\)

c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)

Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)

\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)

Bình luận (0)
NL
Xem chi tiết
HT
3 tháng 6 2017 lúc 8:34

phương trình có 

\(\Delta^'=\left(m+3\right)^2-m^2-3=m^2+6m+9-m^2-3\)

\(=6m+6\)

phương trình có nghieemk kép \(\Leftrightarrow\Delta^'=0\Leftrightarrow6m+6=0\Leftrightarrow m=-1\)phương trình có hai nghiệm phân biệt \(\Leftrightarrow\Delta^'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)áp dụng viet : \(\hept{\begin{cases}x_1+x_2=-2\left(m+3\right)\\x_1.x_2=m^2+3\end{cases}}\)theo giả thiêt có \(x_1-x_2=2\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow4\left(m+3\right)^2-4\left(m^2+3\right)=4\Leftrightarrow m^2+6m+9-m^2-3=1\)\(\Leftrightarrow6m=-5\Leftrightarrow m=-\frac{5}{6}\left(tmdk\right)\)

Bình luận (0)
NH
Xem chi tiết
NT
23 tháng 4 2023 lúc 21:36

Để phương trình có nghiệm kép thì 6^2-4(m-2)=0

=>4(m-2)=36

=>m-2=9

=>m=11

=>x^2+6x+9=0

=>x=-3

Bình luận (0)