Những câu hỏi liên quan
CT
Xem chi tiết
TR
25 tháng 5 2022 lúc 17:26

 

\(A=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{128}-\dfrac{1}{256}\right)\)

\(A=1-\dfrac{1}{256}\)

\(A=\dfrac{255}{256}\)

 

 

Bình luận (3)
H24
Xem chi tiết
H24
17 tháng 12 2023 lúc 20:46

giải tri tiết nha

Bình luận (0)
KP
17 tháng 12 2023 lúc 20:48

1/5+45/9+1/2+1/3+1/2+1/9+1/15+1/99= ai trả lời đc đưa số tài khoản mik cho 100k

Bình luận (0)
NK
Xem chi tiết
BI
15 tháng 10 2021 lúc 21:20
Đáp án𝑠=15376
Bình luận (1)
GD
Xem chi tiết
MS
29 tháng 4 2018 lúc 7:54

\(N=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)

\(N=\dfrac{1}{2^1}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\)

\(2N=1-\dfrac{1}{2^1}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\)

\(2N+N=1-\dfrac{1}{2^6}\)

\(N=\dfrac{1}{3}-\dfrac{1}{2^6.3}< \dfrac{1}{3}\left(đpcm\right)\)

Bình luận (0)
CT
Xem chi tiết
H24
10 tháng 8 2017 lúc 22:46

Giải:

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}\)

Lấy vế trừ vế, ta được:

\(A-\dfrac{1}{2}A=\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)

\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}-\dfrac{1}{2^7}}{\dfrac{1}{2}}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}\left(1-\dfrac{1}{2^6}\right)}{\dfrac{1}{2}}\)

\(\Leftrightarrow A=1-\dfrac{1}{2^6}\)

Vậy \(A=1-\dfrac{1}{2^6}\).

Chúc bạn học tốt!!!

Bình luận (1)
MS
10 tháng 8 2017 lúc 23:28

Đặt:

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)

\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)

\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)

\(A=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bình luận (0)
TT
Xem chi tiết
HN
21 tháng 7 2017 lúc 16:32

Ta có: \(VT=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(4VT=\dfrac{1}{2^2:2^2}+\dfrac{1}{4^2:2^2}+\dfrac{1}{6^2:2^2}+...+\dfrac{1}{100^2:2^2}\)

\(4VT=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

Lại có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(\Rightarrow4VT-1< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)(*)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\) (**)

Từ (*) và (**) \(\Rightarrow4VT< 2-\dfrac{1}{50}\)

\(\Rightarrow VT< \dfrac{1}{2}-\dfrac{1}{200}< VP\Rightarrow\) đpcm

b) Ta có: \(2VT=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)

\(2VT+VT=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

\(3VT=1-\dfrac{1}{64}< 1\)

\(\Rightarrow VT< \dfrac{1}{3}\) (đpcm)

Bình luận (1)
TT
Xem chi tiết
KA
16 tháng 2 2022 lúc 21:26

\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)

=>\(B=\dfrac{32+16+6+2+1}{64}\)

=>\(B=\dfrac{63}{64}\)

Bình luận (1)
SH
16 tháng 2 2022 lúc 21:23

\(\dfrac{63}{64}\)

Bình luận (0)
NL
16 tháng 2 2022 lúc 21:36

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^6}\)

\(2B=1+\dfrac{1}{2}+...+\dfrac{1}{2^5}\)

\(\Rightarrow2B-B=1-\dfrac{1}{2^6}\)

\(\Rightarrow B=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bình luận (0)
KN
Xem chi tiết
HN
8 tháng 5 2017 lúc 9:45

Sửa đề:

\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< 1\)

Ta có:

\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{64}\)

\(< \dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}< \dfrac{4}{4}< 1\)

Bình luận (0)
DH
Xem chi tiết
H24
4 tháng 1 2022 lúc 21:46

\(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{64}-\dfrac{1}{128}\\ =\dfrac{1}{2}-\dfrac{1}{128}\\ =\dfrac{63}{128}\)

\(7m^28dm^2=7,08m^2\)

Bình luận (0)
NT
4 tháng 1 2022 lúc 21:46

c: =7,08

Bình luận (0)
NM
4 tháng 1 2022 lúc 21:47

Đặt \(A=\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{128}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^7}\\ \Rightarrow2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^6}\\ \Rightarrow2A-A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^6}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^7}\\ \Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2^7}=\dfrac{2^6-1}{2^7}=\dfrac{63}{128}\)

\(7m^28dm^2=7\dfrac{8}{100}m^2=7,08m^2\)

Bình luận (0)