Đại số lớp 6

CT

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

H24
10 tháng 8 2017 lúc 22:46

Giải:

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}\)

Lấy vế trừ vế, ta được:

\(A-\dfrac{1}{2}A=\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)

\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}-\dfrac{1}{2^7}}{\dfrac{1}{2}}\)

\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}\left(1-\dfrac{1}{2^6}\right)}{\dfrac{1}{2}}\)

\(\Leftrightarrow A=1-\dfrac{1}{2^6}\)

Vậy \(A=1-\dfrac{1}{2^6}\).

Chúc bạn học tốt!!!

Bình luận (1)
MS
10 tháng 8 2017 lúc 23:28

Đặt:

\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)

\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)

\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)

\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)

\(A=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
KL
Xem chi tiết
KL
Xem chi tiết
LY
Xem chi tiết
KL
Xem chi tiết
NQ
Xem chi tiết
WT
Xem chi tiết