bỏ dấu ngoặc rồi tính
\(A=\left(37,1-4,5\right)-\left(-4,5+37,1\right)\))
\(B=-\left(315.4+275\right)+4.315-\left(10-275\right)\)
\(C=-\left(\frac{3}{7}+\frac{3}{8}\right)-\left(-\frac{3}{8}+\frac{4}{7}\right)\)
bỏ dấu ngoặc rồi tính
\(A=\left(37,1-4,5\right)-\left(-4,5+37,1\right)\))
\(B=-\left(315.4+275\right)+4.315-\left(10-275\right)\)
\(C=-\left(\frac{3}{7}+\frac{3}{8}\right)-\left(-\frac{3}{8}+\frac{4}{7}\right)\)
\(A=\left(37,1-4,5\right)-\left(-4,5+37,1\right)\)
\(=37,1-4,5+4,5-37,1\)
\(=37,1-37,1-4,5+4,5\)
\(=0.\)
\(B=-\left(315.4+275\right)+4.315-\left(10-275\right)\)
\(=-315.4-275+4.315-10+275\)
\(=-315.5+4.315-275+275-10\)
\(=0+0-10=-10.\)
\(C=-\left(\frac{3}{7}+\frac{3}{8}\right)-\left(-\frac{3}{8}+\frac{4}{7}\right)\)
\(=-\frac{3}{7}-\frac{3}{8}+\frac{3}{8}-\frac{4}{7}\)
\(=-\frac{3}{7}-\frac{4}{7}-\frac{3}{8}+\frac{3}{8}\)
\(=-1+0=-1.\)
A=37,1 - 4,5 + 4,5 - 37,1
A=(37,1 - 37,10) + ( 4,5 - 4,5 )
A = 0 + 0 = 0
B= -315.4 - 275 + 4.315 - 10 + 275
B=(-315.4 + 4.315) + ( 275-275) - 10
B= 0 + 0 - 10 = -10
C= -3/7 - 3/8 + 3/8 - 4/7
C = ( -3/7-4/7) + ( 3/8 - 3/8)
C=-7/7 + 0 = -7/7 = -1
Giải các phương trình sau:*
a) \(x^2\left(x+4,5\right)=13,5\)
b) \(\left(x-1\right)^3+x^3+\left(x+1\right)^3=\left(x+2\right)^3\)
c) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
d) \(\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)=72\)
a/ \(\Leftrightarrow2x^3+9x^2-27=0\)
\(\Leftrightarrow2x^3+12x^2+18x-3x^2-18x-27=0\)
\(\Leftrightarrow2x\left(x^2+6x+9\right)-3\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow...\)
b/ \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)
\(\Leftrightarrow x^3-3x^2-3x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+x+1\right)=0\)
c/ \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(x^2+x=t\)
\(t\left(t-2\right)-24=0\Leftrightarrow t^2-2t-24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x=6\\x^2+x=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+4=0\end{matrix}\right.\)
d/ \(\Leftrightarrow\left(x-7\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-72=0\)
\(\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\)
Đặt \(x^2-9x+14=0\)
\(t\left(t+6\right)-72=0\Leftrightarrow t^2+6t-72=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9x+14=6\\x^2-9x+14=-12\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-9x+8=0\\x^2-9x+26=0\end{matrix}\right.\)
Cho \(a,b,c\in Z\) để \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=a+b+c\)
CMR: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3⋮81\)
Ta có \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Để tổng trên chia hết cho 81 thì \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
Mà \(a+b+c=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Bài toán trở thành: Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\) - Hoc24
Cho \(a,b,c\) là các số dương . \(CMR\) \(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{c^3}{\left(c+a\right)\left(a+b\right)}\ge\dfrac{1}{4}\left(a+b+c\right)\)
\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(a+b\right)\left(b+c\right)}{64}}=\dfrac{3a}{4}\)
Tương tự:
\(\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{c+a}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(c+a\right)\left(a+b\right)}+\dfrac{c+a}{8}+\dfrac{a+b}{8}\ge\dfrac{3c}{4}\)
Cộng vế:
\(VT+\dfrac{4\left(a+b+c\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c là số dương thỏa mãn a+b+c=3. CMR
a/ \(8\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\left(3+a\right)\left(3+b\right)\left(3+c\right)\)
b/ \(\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\le abc\)
Tìm x và y biết:
a) \(2\left|2x-3\right|=\frac{1}{2}\)
b) \(7,5-3\left|5-2x\right|=-4,5\)
c) \(\left|3x-4\right|+\left|5-2x\right|=0\)
d) \(\left|x+3\right|+\left|x+1\right|=3x\)
a)\(2\left|2x-3\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13}{8}\\x=\frac{11}{8}\end{matrix}\right.\)
Vậy....
b)\(7,5-3\left|5-2x\right|=-4,5\)
\(\Leftrightarrow\left|5-2x\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)
VẬy...
c)\(\left|3x-4\right|+\left|5-2x\right|=0\)
Có: \(\left|3x-4\right|\ge0với\forall x\\ \left|5-2x\right|\ge0với\forall x\)
\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5-2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow x\in\varnothing\)
Bài 3: Thực hiện phép tính a) \(\left(\frac{2}{5}\right)^{^2}+5\frac{1}{2}:\left(4,5-2\right)+\frac{2^3}{\left(-4\right)}\) b) \(\left(\frac{2}{5}\right)^{^2}+5\frac{1}{2}:\left(4,5-2\right)+\frac{2^3}{\left(-4\right)}\)
Bài 3 :
\(a,\left(\frac{2}{5}\right)^2+5\frac{1}{2}:\left(4,5-2\right)+\frac{2^3}{\left(-4\right)}\)
\(=\frac{4}{25}+\frac{11}{2}:\frac{5}{2}+\frac{8}{\left(-4\right)}\)
\(=\frac{4}{25}+\frac{11}{5}-2\)
\(=\frac{59}{25}-2\)
\(=\frac{9}{25}\)
b, Giống câu a
Học tốt
a) Cho \(A\left(-1;8\right);B\left(1;6\right);C\left(3;4\right)\). Chứng minh ba điểm A, B, C thẳng hàng ?
b) Cho \(A\left(1;1\right);B\left(3;2\right)\) và \(C\left(m+4;2m+1\right)\). Tìm m để 3 điểm A. B. C thẳng hàng ?
a) \(\overrightarrow{AB}\left(2;-2\right)\); \(\overrightarrow{CA}=\left(4;-4\right)\).
Vì \(\dfrac{2}{4}=\dfrac{-2}{-4}\) nên \(\overrightarrow{AB};\overrightarrow{CA}\) cùng phương . Suy ra ba điểm A, B, C thẳng hàng.
\(\overrightarrow{AB}\left(2;1\right)\); \(\overrightarrow{AC}\left(m+3;2m\right)\).
3 điểm A, B, C thẳng hàng nên hai véc tơ \(\overrightarrow{AB},\overrightarrow{AC}\) cùng phương.
Suy ra: \(\dfrac{m+3}{2}=\dfrac{2m}{1}\Leftrightarrow m+3=4m\)\(\Leftrightarrow m=1\).
Cho a, b, c > 0 . CMR :
\(\dfrac{a^3}{\left(2a+b\right)\left(2b+c\right)}+\dfrac{b^3}{\left(2b+c\right)\left(2c+a\right)}+\dfrac{c^3}{\left(2c+a\right)\left(2a+b\right)}\le\dfrac{a+b+c}{9}\)
Dấu >= hay <= vậy bạn? Bạn xem lại đề.
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)
\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)
Tương tự:
\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)
\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)
Cộng vế:
\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)